|
Frontiers of Information Technology & Electronic Engineering
ISSN 2095-9184 (print), ISSN 2095-9230 (online)
2025 Vol.26 No.8 P.1356-1377
Enhanced hippopotamus optimization algorithm for tuning proportional–integral–derivative controllers
Abstract: Effectively tuning the parameters of proportional–integral–derivative (PID) controllers has persistently posed a challenge in control engineering. This study proposes enhanced hippopotamus optimization (EHO) to address this challenge. Latin hypercube sampling and adaptive lens reverse learning are used to initialize the population to improve population diversity and enhance global search. Additionally, an adaptive perturbation mechanism is introduced into the position update in the exploration phase. To validate the performance of EHO, it is benchmarked against hippopotamus optimization and four classical or state-of-the-art intelligent algorithms using the CEC2022 test suite. The effectiveness of EHO is further evaluated by applying it in tuning PID controllers for different types of systems. The performance of EHO is compared with five other algorithms and the classical Ziegler–Nichols method. Analysis of convergence curves, step responses, box plots, and radar charts indicates that EHO outperforms the compared methods in accuracy, convergence speed, and stability. Finally, EHO is used to tune the cascade PID controller for trajectory tracking in a quadrotor unmanned aerial vehicle to assess its applicability. The simulation results indicate that the integrals of the time absolute error for the position channels (x, y, z), when the system is optimized using EHO over an 80 s runtime, are 59.979, 22.162, and 0.017, respectively. These values are notably lower than those obtained by the original hippopotamus optimization and manual parameter adjustment.
Key words: PID controllers; Parameter tuning; Hippopotamus optimization; Latin hypercube sampling; Adaptive lens reverse learning; Adaptive perturbation mechanism
1贵州大学电气工程学院,中国贵阳市,550025
2华南理工大学计算机科学与工程学院,中国广州市,510006
摘要:有效调节比例——积分——微分(PID)控制器参数一直是控制工程领域中的挑战性难题。本文提出一种增强型河马优化算法(EHO)以应对这一挑战。采用拉丁超立方体抽样和自适应透镜反向学习初始化种群,以提高种群多样性,并增强全局搜索能力。此外,在探索阶段引入自适应扰动机制以优化位置更新。为验证EHO性能,使用CEC2022测试函数对其与原始河马优化算法及4种经典或先进的智能算法进行基准测试。通过在不同类型的系统中应用EHO调节PID控制器,进一步评估其有效性。将EHO与其他5种算法及经典的齐格勒-尼科尔斯方法进行比较。对收敛曲线、阶跃响应、箱形图和雷达图的分析表明,EHO在精度、收敛速度和稳定性方面均优于对比方法。最后,采用EHO对四旋翼无人机轨迹跟踪的级联PID控制器进行参数调整,以评估其适用性。仿真结果表明,使用EHO优化的系统在80秒内的位置通道(x,y,z)的时间绝对误差积分分别为59.979、22.162和0.017。这些数值明显低于原始河马优化算法和手动参数调整方法的结果。
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/FITEE.2400492
CLC number:
TP181
Download Full Text:
Downloaded:
1499
Download summary:
<Click Here>Downloaded:
220Clicked:
1139
Cited:
0
On-line Access:
2025-06-04
Received:
2024-06-07
Revision Accepted:
2024-10-04
Crosschecked:
2025-09-04