Publishing Service

Polishing & Checking

Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184 (print), ISSN 2095-9230 (online)

FedMcon: an adaptive aggregation method for federated learning via meta controller

Abstract: Federated learning (FL) emerged as a novel machine learning setting that enables collaboratively training deep models on decentralized clients with privacy constraints. In the vanilla federated averaging algorithm (FedAvg), the global model is generated by the weighted linear combination of local models, and the weights are proportional to the local data sizes. This methodology, however, encounters challenges when facing heterogeneous and unknown client data distributions, often leading to discrepancies from the intended global objective. The linear combination-based aggregation often fails to address the varied dynamics presented by diverse scenarios, settings, and data distributions inherent in FL, resulting in hindered convergence and compromised generalization. In this paper, we present a new aggregation method, FedMcon, within a framework of meta-learning for FL. We introduce a learnable controller trained on a small proxy dataset and served as an aggregator to learn how to adaptively aggregate heterogeneous local models into a better global model toward the desired objective. The experimental results indicate that the proposed method is effective on extremely non-independent and identically distributed data and it can simultaneously reach 19 times communication speedup in a single FL setting.

Key words: Federated learning; Meta-learning; Adaptive aggregation

Chinese Summary  <7> FedMcon:一种通过元控制器实现的联邦学习自适应聚合方法

沈弢1,李则熹1,赵子瑜1,朱迪迪1,吕喆奇1,况琨1,张圣宇2,吴超3,4,吴飞1
1浙江大学计算机科学与技术学院,中国杭州市,310027
2浙江大学软件学院,中国杭州市,310027
3浙江大学公共管理学院,中国杭州市,310027
4浙江大学社会治理研究院,中国杭州市,310027
摘要:联邦学习作为一种新型机器学习框架,能在满足隐私约束的前提下,通过去中心化的客户端协作训练深度模型。在经典的联邦学习算法(FedAvg)中,全局模型是通过本地模型的加权线性组合生成的,其权重与客户端本地的数据量成正比。然而,这种方法在面对异构且未知的客户端数据分布时会遭遇挑战,往往导致偏离预期的全局优化目标。基于线性组合的聚合方法难以有效应对联邦学习场景内在的多样化设置、数据分布以及动态变化,从而出现收敛困难和泛化能力下降。本文提出一种基于元学习框架的全新聚合方法FedMcon。引入一个可学习的聚合器,在小规模代理数据集上训练,并用于自适应地将异构的本地模型聚合为一个更符合目标的全局模型。实验结果表明,本文方法能够处理极端非独立同分布数据,在单个联邦学习设置中实现19倍的通信效率提升。

关键词组:联邦学习;元学习;自适应聚合


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/FITEE.2400530

CLC number:

TP39

Download Full Text:

Click Here

Downloaded:

1315

Clicked:

1041

Cited:

0

On-line Access:

2025-06-04

Received:

2024-06-20

Revision Accepted:

2024-12-15

Crosschecked:

2025-09-04

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE