Publishing Service

Polishing & Checking

Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184 (print), ISSN 2095-9230 (online)

Q-space-coordinate-guided neural networks for high-fidelity diffusion tensor estimation from minimal diffusion-weighted images

Abstract: Diffusion tensor imaging (DTI) is a widely used imaging technique for mapping living human brain tissue’s microstructure and structural connectivity. Recently, deep learning methods have been proposed to rapidly estimate diffusion tensors (DTs) using only a small quantity of diffusion-weighted (DW) images. However, these methods typically use the DW images obtained with fixed q-space sampling schemes as the training data, limiting the application scenarios of such methods. To address this issue, we develop a new deep neural network called q-space-coordinate-guided diffusion tensor imaging (QCG-DTI), which can efficiently and correctly estimate DTs under flexible q-space sampling schemes. First, we propose a q-space-coordinate-embedded feature consistency strategy to ensure the correspondence between q-space-coordinates and their respective DW images. Second, a q-space-coordinate fusion (QCF) module is introduced which efficiently embeds q-space-coordinates into multiscale features of the corresponding DW images by linearly adjusting the feature maps along the channel dimension, thus eliminating the dependence on fixed diffusion sampling schemes. Finally, a multiscale feature residual dense (MRD) module is proposed which enhances the network's feature extraction and image reconstruction capabilities by using dual-branch convolutions with different kernel sizes to extract features at different scales. Compared to state-of-the-art methods that rely on a fixed sampling scheme, the proposed network can obtain high-quality diffusion tensors and derived parameters even using DW images acquired with flexible q-space sampling schemes. Compared to state-of-the-art deep learning methods, QCG-DTI reduces the mean absolute error by approximately 15% on fractional anisotropy and around 25% on mean diffusivity.

Key words: Diffusion tensor imaging; Diffusion tractography; Deep learning; Fast diffusion tensor estimation; Q-space-coordinate information

Chinese Summary  <7> Q空间坐标引导的神经网络从最小数量扩散加权图像中实现高保真扩散张量估计

郑茂坤,李智,郑龙,王卫东,李丹丹,王国美
贵州大学计算机科学与技术学院公共大数据国家重点实验室,中国贵阳市,550025
摘要:扩散张量成像(DTI)是一种广泛应用于绘制活体人脑组织微观结构和结构连接的成像方法。最近,学者提出多种仅用少量扩散加权(DW)图像快速估计扩散张量的深度学习方法。然而,这些方法通常使用固定q空间采样方案获取的DW图像作为训练数据,从而限制了其应用场景。为解决这一问题,我们开发了一种新的深度神经网络,称作QCG-DTI,能够在灵活的q空间采样方案条件下,实现高效、准确的扩散张量估计。首先,提出一个q空间坐标嵌入特征一致性策略,保证q空间坐标与其相应的DW图像之间的对应关系。在此基础上,提出一个q空间坐标融合(QCF)模块,该模块通过线性调节特征图的方式,将q空间坐标高效嵌入到相应DW图像的多尺度特征中,从而消除对固定扩散采样方案的依赖。最后,提出一个多尺度特征残差密集(MRD)模块,通过使用不同核大小的双分支卷积提取不同尺度的特征,以此提升特征提取和图像重建能力。与依赖于固定采样方案的最先进方法相比,所提网络即使在使用灵活q空间采样方案获取的DW图像情况下,也能获得高质量扩散张量及其衍生参数。与最先进的使用深度学习方法相比,QCG-DTI在分数各向异性指标上将平均绝对误差降低约15%,在平均扩散率指标上降低约25%。

关键词组:扩散张量成像;扩散纤维束成像;深度学习;快速扩散张量估计;Q空间坐标信息


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/FITEE.2400766

CLC number:

TP391.4

Download Full Text:

Click Here

Downloaded:

861

Download summary:

<Click Here> 

Downloaded:

214

Clicked:

900

Cited:

0

On-line Access:

2025-06-04

Received:

2024-09-03

Revision Accepted:

2025-01-24

Crosschecked:

2025-09-04

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE