Publishing Service

Polishing & Checking

Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184 (print), ISSN 2095-9230 (online)

TransRAG for parallel transportation: toward reliable and trustworthy transportation systems via retrieval-augmented generation

Abstract: Parallel transportation serves as a holistic paradigm for achieving intelligent traffic management and control, focusing on addressing the complexity of human and social factors. Recently, the emergence and development of foundational models (FMs) have ushered in a new era for the realization of parallel transportation. However, the inherent issues of “hallucinations,” outdated knowledge, and the “black-box” nature of FMs render their generated decisions unreliable and untrustworthy. To address these issues, we propose a TransRAG framework for parallel transportation based on retrieval-augmented generation and chain-of-thought (CoT) prompting. TransRAG is composed of three interacting layers, storage, management, and execution, which work together to deliver personalized and diverse traffic services to users. The external knowledge from the storage layer is incorporated to augment the FM in management layers for computational experiments. The real–virtual interaction between artificial and actual transportation systems is used to continuously optimize the decisions from the management layer. Therefore, TransRAG can incrementally update knowledge and adjust strategies to adapt to the evolving and dynamic traffic environment. Additionally, the integration of blockchain, smart contracts, and caching into TransRAG is expected to address a range of challenges, such as single point of failure, potential privacy breaches, and delays in data access, thereby advancing the transition to “6S” Transportation 5.0.

Key words:

Chinese Summary  <1> 基于检索增强生成的安全可信平行交通框架

杨静1,戴星原1,吕宜生1,LeventeKOVáCS2,王飞跃1,3
1中国科学院自动化研究所,中国北京市,100190
2欧布达大学约翰·冯·诺伊曼信息学院,匈牙利布达佩斯,H-1034
3澳门科技大学创新工程学院,中国澳门市,999078
摘要:平行交通是一种实现智能交通管理与控制的综合性范式,致力于解决人类行为和社会因素的复杂性问题。近年来,基础模型(foundationalmodels, FMs)的崛起为平行交通的实现提供了新的可能。但这种模型固有的知识陈旧、"幻觉"现象以及"黑盒"特性削弱了其决策的可靠性和可信度。为解决这一问题,提出一种基于检索增强生成与思维链提示(chain-of-thought prompting)的平行交通框架TransRAG。该框架由紧密协作的存储层、管理层和执行层组成,旨在为用户提供个性且多样化的交通服务。其中,存储层引入的外部知识增强了管理层中基础模型的性能,以实现复杂的计算实验。执行层中人工交通系统与实际交通系统的虚实交互使得管理层的决策得到持续优化,从而实现动态知识更新和灵活的策略调整,以适应不断变化的交通环境。此外,TransRAG通过区块链、智能合约和缓存技术的集成,能够有效应对单点故障、隐私泄露以及数据访问延迟等问题,从而加速推进向"6S"交通5.0的全面迈进。

关键词组:平行交通;基础模型;区块链;缓存;智能合约;检索增强生成


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/FITEE.2400800

CLC number:

Download Full Text:

Click Here

Downloaded:

49

Download summary:

<Click Here> 

Downloaded:

37

Clicked:

70

Cited:

0

On-line Access:

2025-02-10

Received:

2024-09-13

Revision Accepted:

2024-12-04

Crosschecked:

2025-02-18

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE