|
Frontiers of Information Technology & Electronic Engineering
ISSN 2095-9184 (print), ISSN 2095-9230 (online)
2025 Vol.26 No.7 P.1027-1065
Image generation evaluation: a comprehensive survey of human and automatic evaluations
Abstract: Image generation models have made remarkable progress, and image evaluation is crucial for explaining and driving the development of these models. Previous studies have extensively explored human and automatic evaluations of image generation. Herein, these studies are comprehensively surveyed, specifically for two main parts: evaluation protocols and evaluation methods. First, 10 image generation tasks are summarized with focus on their differences in evaluation aspects. Based on this, a novel protocol is proposed to cover human and automatic evaluation aspects required for various image generation tasks. Second, the review of automatic evaluation methods in the past five years is highlighted. To our knowledge, this paper presents the first comprehensive summary of human evaluation, encompassing evaluation methods, tools, details, and data analysis methods. Finally, the challenges and potential directions for image generation evaluation are discussed. We hope that this survey will help researchers develop a systematic understanding of image generation evaluation, stay updated with the latest advancements in the field, and encourage further research.
Key words: Image generation evaluation; Human evaluation; Automatic evaluation; Evaluation protocols; Evaluation aspects
1浙江大学软件学院,中国宁波市,315100
2东南大学计算机科学与工程学院,中国南京市,211189
3浙江大学计算机科学与技术学院,中国杭州市,310027
摘要:图像生成模型取得了显著进展,其中图像评估在解释和推动这些模型的发展方面至关重要。现有研究广泛探讨了图像生成的人类评估与自动评估。本文对相关研究进行了系统综述,重点涵盖两个核心部分:评估协议与评估方法。首先,总结了10类图像生成任务,重点关注它们在评估方面的差异。基于此,提出一种新的评估协议,以涵盖不同图像生成任务所需的人类与自动评估的重要评估方面。其次,重点回顾过去5年中提出的自动评估方法。据我们所知,本文是对人工评估的首次全面总结,涵盖评估方法、工具、评估细节及数据分析方法。最后,探讨了当前图像生成评估面临的挑战及未来发展方向。希望本综述能够帮助研究人员系统理解图像生成评估,掌握该领域最新进展,并推动相关研究的开展。
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/FITEE.2400904
CLC number:
TP391.4
Download Full Text:
Downloaded:
296
Clicked:
271
Cited:
0
On-line Access:
2025-07-28
Received:
2024-10-12
Revision Accepted:
2025-01-24
Crosschecked:
2025-07-30