Publishing Service

Polishing & Checking

Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184 (print), ISSN 2095-9230 (online)

FedSTGCN: a novel federated spatiotemporal graph learning-based network intrusion detection method for the Internet of Things

Abstract: The rapid growth and increasing complexity of Internet of Things (IoT) devices have made network intrusion detection a critical challenge, especially in edge computing environments where data privacy is a primary concern. Machine learning-based intrusion detection techniques enhance IoT network security but often require centralized network data, posing significant risks to data privacy and security. Although federated learning (FL)-based network intrusion detection methods have emerged in recent years to address privacy concerns, they have not fully leveraged the advantages of graph neural networks (GNNs) for intrusion detection. To address this issue, we propose a federated spatiotemporal graph convolutional network (FedSTGCN) model, which integrates the capabilities of spatiotemporal GNNs (STGNNs) and federated learning. This framework enables collaborative model training across distributed IoT devices without requiring the sharing of raw data, thereby improving network intrusion detection accuracy while preserving data privacy. Extensive experiments are conducted on two widely used IoT intrusion detection datasets to evaluate the effectiveness of the proposed approach. The results demonstrate that FedSTGCN outperforms other methods in both binary and multiclass classification tasks, achieving over 97% accuracy in binary classification tasks and over 92% weighted F1-score in multiclass classification tasks.

Key words: Internet of Things (IoT); Network intrusion detection; Spatiotemporal graph neural network (STGNN); Federated learning (FL); Data privacy

Chinese Summary  <0> FedSTGCN:一种基于联邦时空图学习的物联网网络入侵检测新方法

王亚鲁1,李捷2,韩志杰3,程普3,Roshan Kumar4
1河南大学计算机与信息工程学院,中国开封市,475004
2郑州航空工业管理学院计算机学院,中国郑州市,450046
3河南大学软件学院,中国开封市,475004
4河南大学迈阿密学院,中国开封市,475004
摘要:物联网(IoT)设备的快速增长和其复杂性的增加使得网络入侵检测成为一个关键挑战,尤其是在以数据隐私为主要关注点的边缘计算环境中。基于机器学习的入侵检测技术可以增强物联网网络的安全性,但通常需要集中式的网络数据,这带来数据隐私和安全方面的重大风险。近年来,尽管出现了基于联邦学习的网络入侵检测方法以应对隐私问题,但这些方法尚未充分利用图神经网络(GNN)在入侵检测中的优势。为解决这一问题,提出一种联邦时空图卷积网络框架(FedSTGCN),该框架结合了时空图神经网络(STGNN)和联邦学习的能力。该框架支持在分布式物联网设备间协同训练模型,无需共享原始数据,从而在保护数据隐私的同时提高网络入侵检测的准确性。在两个广泛使用的物联网入侵检测数据集上进行了大量实验,以评估所提方法的有效性。实验结果表明,FedSTGCN在二分类和多分类任务中均优于其他方法,在二分类任务中准确率超过97%,在多分类任务中加权F1分数超过92%。

关键词组:物联网;网络入侵检测;时空图神经网络;联邦学习;数据隐私


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/FITEE.2400932

CLC number:

TP39

Download Full Text:

Click Here

Downloaded:

359

Clicked:

303

Cited:

0

On-line Access:

2025-07-28

Received:

2024-10-20

Revision Accepted:

2025-03-25

Crosschecked:

2025-07-30

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE