Publishing Service

Polishing & Checking

Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184 (print), ISSN 2095-9230 (online)

Vina-FPGA2: a high-level parallelized hardware-accelerated molecular docking tool based on the inter-module pipeline

Abstract: AutoDock Vina (Vina) is a widely adopted molecular docking tool, often regarded as a standard or used as a baseline in numerous studies. However, its computational process is highly time-consuming. The pioneering field-programmable gate array (FPGA)-based accelerator of Vina, known as Vina-FPGA, offers a high energy-efficiency approach to speed up the docking process. However, the computation modules in the Vina-FPGA design are not efficiently used. This is due to Vina exhibiting irregular behaviors in the form of nested loops with changing upper bounds and differing control flows. Fortunately, Vina employs the Monte Carlo iterative search method, which requires independent computations for different random initial inputs. This characteristic provides an opportunity to implement further parallel computation designs. To this end, this paper proposes Vina-FPGA2, an inter-module pipeline design for further accelerating Vina-FPGA. First, we use individual computational task (Task) independence by sequentially filling Tasks into computation modules. Then, we implement an inter-module pipeline parallel design by the Tag Checker module and architectural modifications, named Vina-FPGA2-Baseline. Next, to achieve resource-efficient hardware implementation, we describe it as an optimization problem and develop a reinforcement learning-based solver. Targeting the Xilinx UltraScale XCKU060 platform, this solver yields a more efficient implementation, named Vina-FPGA2-Enhanced. Finally, experiments show that Vina-FPGA2-Enhanced achieves an average 12.6× performance improvement over the central processing unit (CPU) and a 3.3× improvement over Vina-FPGA. Compared to Vina-GPU, Vina-FPGA2 achieves a 7.2× enhancement in energy efficiency.

Key words: AutoDock Vina (Vina); Hardware accelerator; Field-programmable gate array; Software/hardware co-design

Chinese Summary  <1> Vina-FPGA2:基于模块间流水线的高层级并行硬件加速的分子对接工具

凌明1,唐诗迪1,陈睿祺2,李鑫1,朱燕翔3
1东南大学集成电路学院,中国南京市,210096
2布鲁塞尔自由大学电子与信息学系,比利时布鲁塞尔,1050
3仁面集成电路有限公司VeriMake创新实验室,中国南京市,210088
摘要:AutoDock Vina(Vina)是一种被广泛采用的分子对接工具,被许多研究作为分子对接结果的标准。然而,它的计算过程非常耗时。Vina开创性的基于现场可编程门阵列(FPGA)的加速器--Vina-FPGA,为加速对接过程提供了高能效解决方案。然而,Vina-FPGA设计中的计算模块并未得到高效利用。这是由于Vina在嵌套循环中表现出不规则行为,其上界不断变化且控制流各不相同。值得庆幸的是,Vina采用的蒙特卡洛迭代搜索方法需要对不同随机初始输入进行独立计算。这一特性为进一步实现并行计算设计提供契机。为此,本文提出Vina-FPGA2--一种模块间流水线设计方案,旨在进一步提升Vina-FPGA的运行效率。首先,我们通过将计算任务(Task)依次填入计算模块,实现Task的独立性。随后,借助标签检查模块及架构调整,实现跨模块流水线并行设计,命名为Vina-FPGA2-Baseline。为实现资源高效的硬件实现,将该设计转化为优化问题,并开发了基于强化学习的求解器。该求解器针对Xilinx UltraScale XCKU060平台,实现了更高效的加速器设计,命名为Vina-FPGA2-Enhanced。最后,实验表明,Vina-FPGA2-Enhanced的性能比中央处理器(CPU)平均提高12.6倍,比Vina-FPGA提高3.3倍。与Vina-GPU相比,Vina-FPGA2的能效提高7.2倍。

关键词组:AutoDock Vina (Vina);硬件加速器;可编程门阵列;软硬协同设计


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/FITEE.2400941

CLC number:

TP332.1

Download Full Text:

Click Here

Downloaded:

325

Clicked:

474

Cited:

0

On-line Access:

2026-01-08

Received:

2024-10-22

Revision Accepted:

2025-09-28

Crosschecked:

2026-01-08

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE