Publishing Service

Polishing & Checking

Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184 (print), ISSN 2095-9230 (online)

AOI-OPEN: federated operation and control for DAO-based trustworthy and intelligent AOI ecology

Abstract: Isolated data islands are prevalent in intelligent automated optical inspection (AOI) systems, limiting the full utilization of data resources and impeding the potential of AOI systems. Establishing a collaborative ecology involving software providers, hardware manufacturers, and factories offers an encouraging solution to build a closed-loop data flow and achieve optimal data resource utilization. However, concerns about privacy issues, rights infringement, and threats from other participants present challenges in establishing an efficient and effective community. In this paper, we propose a novel framework, AOI-OPEN, which first creates a trustworthy AOI ecology to gather related entities with decentralized autonomous organization (DAO) mechanisms. Then, a parallel data pipeline is proposed to generate large-scale virtual samples from small-scale real data for AOI systems. Finally, federated learning (FL) is adopted to use the distributed data resources among multiple entities and build privacy-preserving big models. Experiments on defect classification tasks show that, with privacy preserved, AOI-OPEN greatly strengthens the utilization of distributed data resources and improves the accuracy of inspection models.

Key words: Automated optical inspection; Decentralized autonomous organizations; Parallel data; Federated intelligence

Chinese Summary  <0> AOI-OPEN:基于去中心化自治组织的可信智能自动光学检测生态的联邦操作与控制

曹沿松1,王雨桐2,杨静2,田永林2,王建功2,王飞跃1,2
1澳门科技大学创新工程学院,中国澳门市,999078
2中国科学院自动化研究所,中国北京市,100190
摘要:在智能自动光学检测(AOI)系统中,数据孤岛现象普遍存在,限制了数据资源的充分利用并阻碍了AOI系统的潜力发挥。建立一个涉及软件提供商、硬件制造商和工厂的协作生态系统,为形成闭环的数据流动并实现数据资源的最优化利用提供了积极的解决方案。然而,隐私问题、权利侵犯和来自其他参与者的威胁阻碍了高效有为社区的构建。本文提出创新的框架AOI-OPEN,首先利用去中心化自治组织(DAO)建立可信的AOI生态来聚集相关实体。接着,提出平行数据方法,用于从小规模真实数据生成大规模虚拟样本,以供AOI系统使用。最后,采用联邦学习技术,利用多个实体之间分布的数据资源,并以隐私安全的方式构建大模型。在缺陷分类任务上的实验结果显示,AOI-OPEN在保护隐私的同时,极大地加强了分布式数据资源的利用,促进了检测模型准确性的提升。

关键词组:自动光学检测;分布式自治组织;平行数据;联邦智能


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/FITEE.2400975

CLC number:

TP18

Download Full Text:

Click Here

Downloaded:

425

Clicked:

375

Cited:

0

On-line Access:

2025-07-28

Received:

2024-11-04

Revision Accepted:

2024-12-09

Crosschecked:

2025-07-30

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE