|
|
Frontiers of Information Technology & Electronic Engineering
ISSN 2095-9184 (print), ISSN 2095-9230 (online)
2025 Vol.26 No.11 P.2128-2142
Black-box adversarial attacks on deep reinforcement learning-based proportional–integral–derivative controllers for load frequency control
Abstract: Load frequency control (LFC) is usually managed by traditional proportional–integral–derivative (PID) controllers. Recently, deep reinforcement learning (DRL)-based adaptive controllers have been widely studied for their superior performance. However, the DRL-based adaptive controller exhibits inherent vulnerability due to adversarial attacks. To develop more robust control systems, this study conducts a deep analysis of DRL-based adaptive controller vulnerability under adversarial attacks. First, an adaptive controller is developed based on the DRL algorithm. Subsequently, considering the limited capability of attackers, the DRL-based LFC is evaluated under adversarial attacks using the zeroth-order optimization (ZOO) method. Finally, we use adversarial training to enhance the robustness of DRL-based adaptive controllers. Extensive simulations are conducted to evaluate the performance of the DRL-based PID controller with and without adversarial attacks.
Key words: Adaptive controller; Deep reinforcement learning; Load frequency control; Adversarial attacks
1贵州大学计算机科学与技术学院公共大数据国家重点实验室,中国贵阳市,550025
2齐鲁工业大学(山东省科学院)算力互联网与信息安全教育部重点实验室,中国济南市,250353
3青岛理工大学信息与控制工程学院,中国青岛市,266033
4浙江大学控制科学与工程学院工业控制技术全国重点实验室,中国杭州市,310027
摘要:负载频率控制通常由传统的比例-积分-微分(PID)控制器管理。近年来,基于深度强化学习的自适应控制器因其卓越性能而备受关注。然而,这种基于深度强化学习的自适应控制器存在固有的脆弱性,容易受到对抗攻击的影响。为开发更鲁棒的控制系统,本文对基于深度强化学习的自适应控制器在对抗攻击下的脆弱性进行深入分析。首先,基于深度强化学习算法开发了自适应控制器。其次,考虑到攻击者的能力有限,采用零阶优化方法评估基于深度强化学习的负载频率控制在对抗攻击下的表现。最后,通过对抗训练增强基于深度强化学习的自适应控制器的鲁棒性。通过大量仿真,评估了存在和不存在对抗攻击时基于深度强化学习的PID控制器的性能。
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/FITEE.2401021
CLC number:
Download Full Text:
Downloaded:
583
Download summary:
<Click Here>Downloaded:
137Clicked:
1122
Cited:
0
On-line Access:
2026-01-08
Received:
2024-11-23
Revision Accepted:
2025-07-25
Crosschecked:
2026-01-08