Publishing Service

Polishing & Checking

Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184 (print), ISSN 2095-9230 (online)

DRL-EnVar: an adaptive hybrid ensemble–variational data assimilation method based on deep reinforcement learning

Abstract: Accurate estimation of the background error covariance matrix denoted as B remains a critical challenge in numerical weather prediction (NWP), directly influencing data assimilation (DA) performance and forecast accuracy. Although hybrid ensemble–variational (EnVar) methods combine static and flow-dependent matrices to improve assimilation, their effectiveness is constrained by empirically fixed weights. To address this limitation, we propose DRL-EnVar, an adaptive hybrid EnVar DA method enhanced with deep reinforcement learning. DRL-EnVar integrates deep learning (DL) components, including a novel cyclic convolution module to extract abstract features from data, and employs reinforcement learning (RL) to dynamically optimize hybrid weighting strategies. The system adaptively combines multiple ensemble-based flow-dependent matrices with one or more static matrices to construct a time-varying hybrid matrix B that better reflects real-time background errors. Experimental results demonstrate that DRL-EnVar performs better than the traditional ensemble Kalman filter (EnKF) and hybrid covariance DA (HCDA) methods, especially under sparse observations or transitional changes in state variables. It achieves competitive or superior assimilation accuracy with lower computational cost, and can be flexibly integrated into both three-dimensional variational assimilation (3DVar) and four-dimensional variational assimilation (4DVar) frameworks. Overall, DRL-EnVar offers a novel and efficient approach to adaptive DA, particularly valuable for improving forecast skill during transitional weather regimes.

Key words: Adaptive data assimilation; Hybrid ensemble–variational method; Background error covariance; Deep reinforcement learning

Chinese Summary  <0> DRL-EnVar:基于深度强化学习的自适应混合集合-变分资料同化方法

黄丽蓝1,冷洪泽2,宋君强2,王东紫1,王悟信1,胡瑞生2,曹航2
1国防科技大学计算机学院,中国长沙市,410073
2国防科技大学气象海洋学院,中国长沙市,410073
摘要:准确估计背景误差协方差B是数值天气预报的核心挑战之一,它直接影响资料同化系统的性能和数值预报的精度。尽管混合集合-变分同化方法(EnVar)能够结合静态与流依赖的B以提升同化性能,但其有效性常受到经验性固定权重设置的制约。为缓解这一限制,本文提出一种基于深度强化学习的自适应混合EnVar资料同化方法--同化方法EnVar。该方法集成了深度学习组件,其中包括一种新型的环状卷积模块,用于从数据中提取抽象特征;同时,利用强化学习来动态决策最优混合权重。系统能够自适应地将多个具有流依赖属性的集合B与一个或多个静态B进行时变结合,从而构建一个可以更准确反映实时背景误差特征的混合B。实验结果表明,在观测稀疏或状态变量发生剧烈演变时期,DRL-EnVar在同化精度与稳定性方面均优于传统集合卡尔曼滤波与经典混合背景误差协方差方法。该方法不仅在较低计算成本下实现了具有竞争力甚至更优的同化性能,而且能够灵活嵌入三维与四维变分同化框架。总体而言,DRL-EnVar为自适应资料同化提供了一种新颖且高效的途径,特别在转折性天气过程的预报中展现出重要应用价值。

关键词组:自适应资料同化;混合集合-变分方法;背景误差协方差;深度强化学习


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/FITEE.2401063

CLC number:

TP391

Download Full Text:

Click Here

Downloaded:

541

Download summary:

<Click Here> 

Downloaded:

165

Clicked:

1259

Cited:

0

On-line Access:

2026-01-09

Received:

2024-12-14

Revision Accepted:

2025-08-19

Crosschecked:

2026-01-11

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE