Publishing Service

Polishing & Checking

Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184 (print), ISSN 2095-9230 (online)

Port and radiation pattern decoupled metasurface-loaded patch antenna using deep-learning-assisted optimization for MIMO applications

Abstract: A metasurface-loaded 1×2 patch array antenna assisted by a deep-learning optimization method is proposed to realize port and radiation pattern decoupling simultaneously to enhance the isolation among elements in multi-input multi-output (MIMO) systems. The deep-learning-assisted optimization method uses an artificial neural network (ANN) and a particle swarm optimization (PSO) algorithm to seek the optimal structure of the antenna to achieve port decoupling with undistorted radiation patterns. The ANN is trained to describe the nonlinear relationship between the geometric parameters and the responses of the antenna. The PSO algorithm, guided by the cost function and number of iterations, is used to optimize the structure of the antenna according to the cost function combined with the trained ANN. Finally, by constraining the cost function, we obtain a 1×2 patch array antenna with a metasurface fixed above by studs, which achieves port and radiation pattern decoupling simultaneously. To validate the principle and design method, we designed, fabricated, and measured an antenna prototype with dimensions of 0.88λ0×0.47λ0×0.21λ0 (λ0 is the wavelength in free space at the center frequency). The measured fractional bandwidth is 8% (4.8–5.2 GHz). The isolation of the two-element patch antenna increases from 7.6 dB to 24.3 dB with an envelope correlation coefficient (ECC) of <0.0005 at 0.35λ0. Moreover, the H-plane radiation pattern of each element is consistent and symmetric in the broadside direction. These characteristics make the proposed antenna suitable for MIMO antenna systems with close spacing.

Key words: Artificial neural network (ANN); Particle swarm optimization (PSO) algorithm; Mutual coupling; Radiation pattern restoration; Metasurface

Chinese Summary  <0> 面向MIMO应用的深度学习辅助优化端口和辐射方向图解耦的超表面加载贴片天线

刘谷1,沈嘉蒋1,马磊1,秦伟1,杨汶汶1,郭磊2,陈建新1
1南通大学信息科学技术学院,中国南通市,226019
2大连理工大学信息与通信工程学院,中国大连市,116024
摘要:提出一种由深度学习优化方法辅助的元表面加载1×2贴片阵列天线,以同时实现端口和辐射方向图解耦,从而增强多输入多输出(MIMO)系统中元件之间的隔离。深度学习辅助优化方法使用人工神经网络(ANN)和粒子群优化(PSO)算法来寻求天线的最佳结构,以实现具有无失真辐射方向图的端口解耦。ANN被训练来描述几何参数与天线响应之间的非线性关系。在成本函数和迭代次数的指导下,使用PSO算法,根据成本函数并结合训练好的ANN对天线结构进行优化。最后,通过约束成本函数,得到一个1×2贴片阵列天线,其上有一个由螺柱固定的元表面,同时实现了端口和辐射方向图的解耦。为验证该原理和设计方法,设计、制造并测量了一个尺寸为0.88λ0×0.47λ0×0.21λ0λ0是中心频率处自由空间中的波长)的天线原型。测量的分数带宽为8%(4.8-5.2 GHz)。二元贴片天线的隔离度从7.6 dB增加到24.3 dB,在0.35λ0处的包络相关系数(ECC)<0.0005。此外,每个元素的H平面辐射方向图是一致的,并在宽边方向上对称。这些特性使得所提出的天线适用于近间距的MIMO天线系统。

关键词组:人工神经网络;粒子群优化算法;互耦;辐射方向图恢复;超表面


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/FITEE.2500119

CLC number:

TN82

Download Full Text:

Click Here

Downloaded:

334

Download summary:

<Click Here> 

Downloaded:

15

Clicked:

518

Cited:

0

On-line Access:

2025-11-17

Received:

2025-02-25

Revision Accepted:

2025-06-20

Crosschecked:

2025-11-18

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE