Publishing Service

Polishing & Checking

Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184 (print), ISSN 2095-9230 (online)

Multi-perspective consistency checking for large language model hallucination detection: a black-box zero-resource approach

Abstract: Large language models (LLMs) have been applied across various domains due to their superior natural language processing and generation capabilities. Nonetheless, LLMs occasionally generate content that contradicts real-world facts, known as hallucinations, posing significant challenges for real-world applications. To enhance the reliability of LLMs, it is imperative to detect hallucinations within LLM generations. Approaches that retrieve external knowledge or inspect the internal states of the model are frequently used to detect hallucinations; however, this requires either white-box access to the LLM or reliable expert knowledge resources, raising a high barrier for end-users. To address these challenges, we propose a black-box zero-resource approach for detecting LLM hallucinations, which primarily leverages multi-perspective consistency checking. The proposed approach mitigates the LLM overconfidence phenomenon by integrating multi-perspective consistency scores from both queries and responses. In comparison to the single-perspective detection approach, our proposed approach demonstrates superior performance in detecting hallucinations across multiple datasets and LLMs. Notably, in one experiment, where the hallucination rate reaches 94.7%, our approach improves the balanced accuracy (B-ACC) by 2.3 percentage points compared with the single consistency approach and achieves an area under the curve (AUC) of 0.832, all without depending on any external resources.

Key words: Large language models (LLMs); LLM hallucination detection; Consistency checking; LLM security

Chinese Summary  <1> 多视角一致性校验的大语言模型幻觉检测:一种黑盒零资源方法

孔令刚1,2,钟晓峰1,2,陈杰1,2,付浩然1,2,王永杰1,2
1国防科技大学电子对抗学院,中国合肥市,230037
2安徽省网络空间安全态势感知与评估重点实验室,中国合肥市,230037
摘要:大语言模型(LLM)凭借其卓越的自然语言处理与生成能力,已被广泛应用于各个领域。然而,LLM时不时会生成与事实相悖的内容,即所谓幻觉,这为其在现实场景中的应用带来严峻挑战。为提升LLM的可靠性,在LLM生成过程中检测幻觉现象至关重要。常用于检测幻觉的方法包括获取外部知识或检查模型内部状态,但这需要对LLM进行白盒访问或依赖可靠的专家知识资源,对终端用户而言存在较高门槛。为解决这些挑战,我们提出一种基于多视角一致性校验的黑盒零资源检测方法,用于识别LLM的幻觉现象。该方法通过融合查询与响应的多视角一致性分数,有效缓解了LLM过度自信问题。与依赖单一视角的检测方法相比,我们的方法在多个数据集和不同LLM上均展现出更优的幻觉检测性能。值得注意的是,在一个LLM幻觉率为94.7%的实验场景中,相较单视角一致性方法,我们的方法将平均准确率(B-ACC)提升2.3个百分点,并实现0.832的曲线下面积(AUC),全程无需依赖任何外部资源。

关键词组:大语言模型(LLM);LLM幻觉检测;一致性校验;LLM安全


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/FITEE.2500180

CLC number:

TP18

Download Full Text:

Click Here

Downloaded:

178

Clicked:

337

Cited:

0

On-line Access:

2026-01-08

Received:

2025-03-21

Revision Accepted:

2025-10-08

Crosschecked:

2026-01-08

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE