Publishing Service

Polishing & Checking

Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184 (print), ISSN 2095-9230 (online)

When DeepSeek-R1 meets financial applications: benchmarking, opportunities, and limitations

Abstract: How the recent progress of reasoning large language models (LLMs), especially the new open-source model DeepSeek-R1, can benefit financial services is an underexplored problem. While LLMs have ignited numerous applications within the financial sector, including financial news analysis and general customer interactions, DeepSeek-R1 further unlocks the advanced reasoning ability with multiple reinforcement learning-integrated training steps for more complex financial queries and provides distilled student models for resource-constrained scenarios. In this paper, we first introduce the technological preliminaries of DeepSeek-R1. Subsequently, we benchmark the performance of DeepSeek-R1 and its distilled students on two public financial question–answer (QA) datasets as a starting point for interdisciplinary research on financial artificial intelligence (AI). Then, we discuss the opportunities that DeepSeek-R1 offers to current financial services, its current limitations, and three future research directions. In conclusion, we argue for a proper approach to adopting reasoning LLMs for financial AI.

Key words:

Chinese Summary  <0> DeepSeek-R1遇上金融应用:基准、机遇与局限

刘硕凌1,2,陈丽园2,严江鹏2,4,蒋昱航2,王笑予2,李秀4,杨强1,3
1香港科技大学,中国香港特别行政区,999077
2易方达基金管理有限公司,中国广州市,510000
3微众银行,中国深圳市,518054
4清华大学深圳国际研究生院,中国深圳市,518055
摘要:在金融服务领域,推理型大语言模型--尤其新兴开源模型DeepSeek-R1--的潜在价值仍处于初步探索阶段。尽管通用大语言模型已在金融新闻分析、客户交互等场景实现较多应用,但DeepSeek-R1凭借集成强化学习的多阶段训练机制,突破性地解锁了高级推理能力,不仅能精准应对复杂金融问答任务,还针对资源受限环境推出轻量级蒸馏学生模型,显著提升部署灵活性。本文以跨学科视角切入金融人工智能领域,首先系统剖析DeepSeek-R1的技术架构与核心原理,随后基于两个公开金融问答数据集,对DeepSeek-R1及其蒸馏模型开展初步但全面的性能基准测试。在此基础上,深入探讨该模型为金融服务带来的创新机遇,客观分析其现存局限性,并前瞻性地提出3个未来研究方向。本文旨在为推理型大语言模型在金融人工智能领域的合理应用与深度发展提供理论依据与实践指引,推动金融科技迈向更高层次。

关键词组:大语言模型;模型推理;人工智能;金融科技


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/FITEE.2500227

CLC number:

Download Full Text:

Click Here

Downloaded:

2014

Download summary:

<Click Here> 

Downloaded:

31

Clicked:

593

Cited:

0

On-line Access:

2025-11-17

Received:

2025-04-10

Revision Accepted:

2025-04-28

Crosschecked:

2025-11-18

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE