|
|
Frontiers of Information Technology & Electronic Engineering
ISSN 2095-9184 (print), ISSN 2095-9230 (online)
2025 Vol.26 No.12 P.2638-2653
Spectrum sensing method based on a multi-scale feature fusion network
Abstract: Signal-to-noise ratio (SNR) fluctuations significantly affect spectrum sensing performance in wireless communications. Traditional convolutional neural network (CNN) exhibits limited feature extraction capabilities and inefficient feature utilization at low SNR levels, leading to suboptimal spectrum sensing performance. This paper proposes a spectrum sensing method based on a multi-scale feature fusion network (MSFFNet) to address this issue. First, the proposed method employs a multi-scale feature extraction block (MSFEB) to capture multi-scale information from the input data comprehensively. Next, an adaptive feature screening strategy (AFSS) highlights key features while suppressing redundant information. Finally, a multi-level feature fusion mechanism (MLFFM) optimizes and integrates features across scales and levels, enhancing spectrum sensing performance. Simulation results demonstrate that compared to other methods, the proposed approach achieves superior performance in low-SNR communication scenarios. At an SNR of -14 dB, the detection probability Pd reaches 0.936, while the false alarm probability Pfa is only 0.1. Furthermore, this paper constructs a multi-level mixed-SNR dataset to simulate real communication environments and enhance the robustness of spectrum sensing.
Key words: Cognitive radios; Spectrum sensing; Deep learning; Multi-scale feature fusion
吉首大学通信与电子工程学院,中国吉首市,416000
摘要:在无线通信中,信噪比的动态变化显著影响频谱感知性能。在低信噪比条件下,传统卷积神经网络由于特征提取能力有限、特征利用不足,导致频谱感知效果不佳。为此,本文提出一种基于多尺度特征融合网络的频谱感知方法。该方法首先利用多尺度特征提取块充分挖掘输入数据的多尺度信息。然后,采用自适应特征筛选策略突出关键特征并抑制冗余信息。最后,通过多层级特征融合机制对不同尺度和层次的特征进行优化整合,从而提升频谱感知性能。实验结果表明,相较于其他方法,该方法在低信噪比通信场景下表现更优。在信噪比为−14 dB时,检测概率达到0.936,虚警概率低至0.1。此外,本文构建多级混合信噪比数据集来模拟真实通信环境,有效增强频谱感知的鲁棒性。
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/FITEE.2500297
CLC number:
TN929.5
Download Full Text:
Downloaded:
246
Download summary:
<Click Here>Downloaded:
175Clicked:
309
Cited:
0
On-line Access:
2026-01-09
Received:
2025-05-08
Revision Accepted:
2025-10-14
Crosschecked:
2026-01-11