|
|
Frontiers of Information Technology & Electronic Engineering
ISSN 2095-9184 (print), ISSN 2095-9230 (online)
2025 Vol.26 No.10 P.1871-1878
Three trustworthiness challenges in large language model-based financial systems: real-world examples and mitigation strategies
Abstract: The integration of large language models (LLMs) into financial applications has demonstrated remarkable potential for enhancing decision-making processes, automating operations, and delivering personalized services. However, the high-stakes nature of financial systems demands a very high level of trustworthiness that current LLMs often fail to meet. This study identifies and examines three major trustworthiness challenges in LLM-based financial systems: (1) jailbreak prompts that exploit vulnerabilities in model alignment to produce harmful or noncompliant responses; (2) hallucination, where models generate factually incorrect outputs that can mislead financial decision-making; (3) bias and fairness concerns, where demographic or institutional bias embedded in LLMs may result in unfair treatment of individuals or regions. To make these risks concrete, we design three finance-relevant probes and evaluate a set of mainstream LLMs spanning both proprietary and open-source families. Across models, we observe risky behavior in at least one scenario per probe. Based on these findings, we systematically summarize the existing mitigation strategies that aim to address these risks. We argue that resolving these issues is vital not only for ensuring the responsible use of artificial intelligence (AI) in the financial sector but also for enabling its safe and scalable deployment.
Key words:
1贝尔法斯特女王大学电子、电气工程与计算机科学学院,英国贝尔法斯特,BT9 5BN
2莱斯大学计算机科学系,美国得克萨斯州休斯敦市,77005
3北京大学汇丰商学院牛津校区,英国英格兰,OX1 5HR
4肯特大学计算机学院,英国肯特郡坎特伯雷,CT2 7NZ
摘要:大语言模型(LLM)在金融应用中的集成展现出显著潜力,可提升决策流程、实现操作自动化并提供个性化服务。然而,金融系统的高风险特性要求极高的可信度,而当前LLM往往难以满足这一要求。本研究识别并探讨了基于LLM的金融系统中的3大可信度挑战:(1)逃逸式提示—利用模型对齐漏洞生成有害或违规响应;(2)幻觉现象—模型产出事实错误的输出误导金融决策;(3)偏见与公平性问题—LLM内嵌的人口统计或制度偏见可能导致个体或区域遭受不公平对待。为具体呈现这些风险,我们设计了3项金融相关测试,并对涵盖专有与开源家族的主流LLM进行评估。在所有模型中,每项测试至少出现一次风险行为。基于这些发现,系统性地总结了现有风险缓解策略。我们认为,解决这些问题不仅对确保金融领域人工智能的负责任使用至关重要,更是实现其安全可扩展部署的关键所在。
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/FITEE.2500421
CLC number:
Download Full Text:
Downloaded:
131
Download summary:
<Click Here>Downloaded:
14Clicked:
164
Cited:
0
On-line Access:
2025-11-17
Received:
2025-06-18
Revision Accepted:
2025-11-18
Crosschecked:
2025-09-29