Publishing Service

Polishing & Checking

Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184 (print), ISSN 2095-9230 (online)

Integrating the cat’s eye effect and deep learning for low-altitude target detection

Abstract: This paper addresses the urgent need to detect low, slow, and small (LSS) unmanned aerial vehicles (UAVs) in complex and critical environments, proposing an active low-altitude target detection method based on the cat’s eye effect. The detection system incorporates a control module, a laser emission component, a co-optical path panoramic scanning optical mechanism structure, an echo reception component, target detection, and visualization processing to achieve small target detection. The light source is emitted by a near-infrared laser, and the scanning optical path is realized using micro-electro-mechanical system (MEMS) mirrors and servo mechanisms. The echo reception signal is received by an avalanche photodiode (APD) and the target detection module, which captures the reflected signal and distance information. The detection software integrates the local pyramid attention (LPA) module and the field pyramid network (FPN) through the UAV micro lens identification algorithm. It eliminates false alarms by incorporating SKNet21 and uses the APD to collect echo intensity and flight time, thereby reducing the false alarm rate. The results demonstrate the feasibility of the proposed target detection method, which achieves a mean average precision of 0.809 at an intersection over union (IoU) of 0.50, a mean average precision of 0.324 at an IoU of 0.50–0.95, and a throughput of 49.8 Giga floating-point operations per second (GFLOPs), indicating that it can address the current limitations in LSS target detection.

Key words: Low-altitude detection; Optical path detection; Cat’s eye effect; SKNet21; Local pyramid attention; Average precision

Chinese Summary  <0> 基于猫眼效应与深度学习融合的低空目标探测

周斌1,王伟明2,闫宁1,赵琳琳1,李传真1
1郑州科技学院电子与电气工程学院,中国郑州市,450064
2雄安创新研究院微纳传感器件技术实验室,中国雄安新区,071800
摘要:本文针对在复杂关键环境中探测"低慢小"(LSS)无人机的迫切需求,提出一种基于猫眼效应的主动式低空目标探测方法。该探测系统集成了主控模块、激光发射组件、共光路周视扫描光机结构、回波接收组件、目标检测及可视化处理功能,以实现小型目标的探测。光源采用近红外激光发射,扫描光路通过微机电系统(MEMS)镜片与伺服机构实现。回波接收信号由雪崩光电二极管(APD)与目标检测模块共同捕获,该模块可获取反射信号及距离信息。检测软件通过无人机微透镜识别算法,整合局部金字塔注意力(LPA)模块与场金字塔网络(FPN),结合SKNet21模型消除误报,并利用APD采集回波强度与飞行时间数据,有效降低误报率。实验结果验证了该目标检测方法的可行性:在交并比(IoU)为0.50时其平均精度达0.809,在IoU 0.50─0.95区间内其平均精度达0.324,计算吞吐量为49.8 GFLOPs。该方法可突破LSS目标检测的现有局限。

关键词组:低空探测;光路探测;猫眼效应;SKNet21;局部金字塔注意力;平均精度


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/FITEE.2500522

CLC number:

TP391

Download Full Text:

Click Here

Downloaded:

607

Download summary:

<Click Here> 

Downloaded:

415

Clicked:

711

Cited:

0

On-line Access:

2026-01-09

Received:

2025-07-22

Revision Accepted:

2025-10-31

Crosschecked:

2026-01-11

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE