|
|
Frontiers of Information Technology & Electronic Engineering
ISSN 2095-9184 (print), ISSN 2095-9230 (online)
2025 Vol.26 No.12 P.2440-2454
Coevolutionary genetic programming for large-scale dynamic multi-aircraft task allocation
Abstract: Multi-aircraft task allocation (MATA) plays a vital role in improving mission efficiency under dynamic conditions. This paper proposes a novel coevolutionary genetic programming (CoGP) framework that automatically designs high-performance reactive heuristics for dynamic MATA problems. Unlike conventional single-tree genetic programming (GP) methods, CoGP jointly develops two interacting populations, i.e., task prioritizing heuristics and aircraft selection heuristics, to explicitly model the coupling between these two interdependent decision phases. A comprehensive terminal set is constructed to represent the dynamic states of aircraft and tasks, whereas a low-level heuristic template translates developed trees into executable allocation strategies. Extensive experiments on public benchmark instances simulating post-disaster emergency delivery demonstrate that CoGP achieves superior performance compared with state-of-the-art GP and heuristic methods, exhibiting strong adaptability, scalability, and real-time responsiveness in complex and dynamic rescue environments.
Key words: Task allocation; Genetic programming (GP); Hyperheuristic; Combinatorial optimization; Learn-to-optimize
北京航空航天大学电子信息工程学院空地一体新航行系统技术全国重点实验室,中国北京市,100191
摘要:多飞行器任务分配(MATA)在动态条件下对提升任务效率发挥着关键作用。本文提出一种新型协同进化遗传规划(CoGP)框架,可自动设计适用于动态MATA问题的高性能反应性启发式算法。与传统单树遗传规划(GP)方法不同,CoGP协同发展两个交互种群—任务优先级排序和飞行器选择的启发式搜索,从而显式建模这两个相互依存决策阶段的耦合关系。通过构建全面的终端集以表示飞行器与任务的动态状态,并借助低级启发式模板将生成的树结构转化为可执行分配策略。在模拟灾后紧急救援的公开基准实例上开展的大规模实验表明,CoGP相较于最先进的遗传规划与启发式方法表现出卓越性能,在复杂动态救援环境中展现出强适应性、可扩展性及实时响应能力。
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/FITEE.2500540
CLC number:
TP301.6
Download Full Text:
Downloaded:
556
Clicked:
443
Cited:
0
On-line Access:
2026-01-09
Received:
2025-07-30
Revision Accepted:
2025-11-10
Crosschecked:
2026-01-11