Publishing Service

Polishing & Checking

Journal of Zhejiang University SCIENCE A

ISSN 1673-565X(Print), 1862-1775(Online), Monthly

Agrobacterium-mediated transformation of herbicide resistance in creeping bentgrass and colonial bentgrass

Abstract: Embryogenic calli were induced from the seeds of creeping bentgrass (Agrostis palustris Huds.) cv. Regent and colonial bentgrass (Agrostis Tenuis Sibth. Fl. Oxen.) cv. Tiger. The embryogenic calli were precultured on fresh medium for 4-7 days and then co-cultivated with Agrobacterium tumefaciens, LBA4404, which contains plasmid vector-pSBGM harboring bar coding region, synthetic green fluorescent protein (sGFP) coding region and matrix attachment region (MAR). After 3 days of co-cultivation, the calli were washed thoroughly and transferred to MS medium containing 2 mg/L of 2, 4-D, 12-15 mg/L phosphinothricin (PPT) and 250 mg/L of cefotaxime. After 2-3 months of selection, the actively growing calli of 'Regent' and 'Tiger' were transferred to MS medium with 12-15 mg/L PPT and 250 mg/L cefotaxime for regeneration. The putative transformants were maintained on MS medium with 3 mg/L PPT for long period but control died within 1 month. After establishing in greenhouse, the transformants also showed strong resistance to 0.4% of herbicide Basta but control plants died within 2 weeks. Under confocal microscope, both young leaves and roots showed significant GFP expression. PCR analysis revealed the presence of a DNA fragment of GFP gene at the expected size (380 bp) in the transformants and its absence in a randomly selected control plant.

Key words: Agrostis palustris, Agrostis tenuis, Agrobacterium, Herbicide resistance, sGFP(synthetic green fluorescent protein)


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/jzus.2003.0346

CLC number:

S603.6

Download Full Text:

Click Here

Downloaded:

3039

Clicked:

5636

Cited:

8

On-line Access:

2024-08-27

Received:

2023-10-17

Revision Accepted:

2024-05-08

Crosschecked:

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE