Publishing Service

Polishing & Checking

Journal of Zhejiang University SCIENCE A

ISSN 1673-565X(Print), 1862-1775(Online), Monthly

Large eddy simulation of the gas-particle turbulent wake flow

Abstract: To find out the detailed characteristics of the coherent structures and associated particle dispersion in free shear flow, large eddy simulation method was adopted to investigate a two-dimensional particle-laden wake flow. The well-known Sub-grid Scale mode introduced by Smagorinsky was employed to simulate the gas flow field and Lagrangian approach was used to trace the particles. The results showed that the typical large-scale vortex structures exhibit a stable counter rotating arrangement of opposite sign, and alternately form from the near wall region, shed and move towards the downstream positions of the wake with the development of the flow. For particle dispersion, the Stokes number of particles is a key parameter. At the Stokes numbers of 1.4 and 3.8 the particles concentrate highly in the outer boundary regions. While the particles congregate densely in the vortex core regions at the Stokes number of 0.15, and the particles at Stokes number of 15 assemble in the vortex braid regions and the rib regions between the adjoining vortex structures.

Key words: Large eddy simulation, Plane wake, Coherent structures, Particle dispersion


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/jzus.2004.0106

CLC number:

TK16

Download Full Text:

Click Here

Downloaded:

2947

Clicked:

6331

Cited:

0

On-line Access:

2024-08-27

Received:

2023-10-17

Revision Accepted:

2024-05-08

Crosschecked:

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE