Publishing Service

Polishing & Checking

Journal of Zhejiang University SCIENCE A

ISSN 1673-565X(Print), 1862-1775(Online), Monthly

Improved elastase production by Bacillus sp. EL31410 — further optimization and kinetics studies of culture medium for batch fermentation

Abstract: An efficient culture medium producing a bacterial elastase with high yields was developed further following preliminary studies by means of response surface method. Central composite design (CCD) and response surface methodology were applied to optimize the medium constituents. A central composite design was used to explain the combined effect of three medium constituents, viz, glucose, K2HPO4, MgSO4·7H2O. The strain produced more elastase in the completely optimized medium, as compared with the partially optimized medium. The fitted model of the second model, as per RSM, showed that glucose was 7.4 g/100 ml, casein 1.13 g/100 ml, corn steep flour 0.616 g/100 ml, K2HPO4 0.206 g/100 ml and MgSO4·7H2O 0.034 g/100 ml. The fermentation kinetics of these two culture media in the flask experiments were analyzed. It was found that the highest elastase productivity occurred at 54 hours. Higher glucose concentration had inhibitory effect on elastase production. At the same time, we observed that the glucose consumption rate was slow in the completely optimized medium, which can explain the lag period of the highest elastase production. Some metal ions and surfactant additives also affected elastase production and cell growth.

Key words: Elastase, Bacillus sp. EL31410, Culture medium optimization, Central composite design, Response surface methodology, Batch fermentation, Fermentation kinetics studies


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/jzus.2004.0149

CLC number:

Q939

Download Full Text:

Click Here

Downloaded:

3082

Clicked:

6913

Cited:

15

On-line Access:

2024-08-27

Received:

2023-10-17

Revision Accepted:

2024-05-08

Crosschecked:

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE