Publishing Service

Polishing & Checking

Journal of Zhejiang University SCIENCE A

ISSN 1673-565X(Print), 1862-1775(Online), Monthly

Analysis of digenic epistatic effects and QE interaction effects QTL controlling grain weight in rice

Abstract: Immortalized F2 population of rice (Oryza sativa L.) was developed by randomly mating F1 among recombinant inbred (RI) lines derived from (Zhenshan 97B × Minghui 63), which allowed replications within and across environments. QTL (quantitative trait loci) mapping analysis on kilo-grain weight of immortalized F2 population was performed by using newly developed software for QTL mapping, QTLMapper 2.0. Eleven distinctly digenic epistatic loci included a total of 15 QTL were located on eight chromosomes. QTL main effects of additive, dominance, and additive × additive, additive × dominance, and dominance × dominance interactions were estimated. Interaction effects between QTL main effects and environments (QE) were predicted. Less than 40% of single effects, most of which were additive effects, for identified QTL were significant at 5% level. The directional difference for QTL main effects suggested that these QTL were distributed in parents in the repulsion phase. This should make it feasible to improve kilo-grain weight of both parents by selecting appropriate new recombinants. Only few of the QE interaction effects were significant. Application prospect for QTL mapping achievements in genetic breeding was discussed.

Key words: Immortalized F2 population, Rice, Kilo-grain weight, QTL, Epistasis, QTL × environment


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/jzus.2004.0371

CLC number:

S33

Download Full Text:

Click Here

Downloaded:

3043

Clicked:

5704

Cited:

11

On-line Access:

2024-08-27

Received:

2023-10-17

Revision Accepted:

2024-05-08

Crosschecked:

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE