|
Journal of Zhejiang University SCIENCE A
ISSN 1673-565X(Print), 1862-1775(Online), Monthly
2006 Vol.7 No.8 P.1440-1446
Investigation of reinforcement of the modified carbon black from wasted tires by nuclear magnetic resonance
Abstract: Pyrolysis has the potential of transforming waste into recyclable products. Pyrolytic carbon black (PCB) is one of the most important products from the pyrolysis of used tires. Techniques for surface modifications of PCB have been developed. One of the most significant applications for modified PCB is to reinforce the rubber matrix to obtain high added values. The transverse relaxation and the chain dynamics of vulcanized rubber networks with PCB and modified PCB were studied and compared with those of the commercial carbon blacks using selective 1H transverse relaxation (T2) experiments and dipolar correlation effect (DCE) experiments on the stimulated echo. Demineralization and coupling agent modification not only intensified the interactions between the modified PCB and the neighboring polyisoprene chains, but also increased the chemical cross-link density of the vulcanized rubber with modified PCB. The mechanical testing of the rubbers with different kinds of carbon blacks showed that the maximum strain of the rubber with modified PCB was improved greatly. The mechanical testing results confirmed the conclusion obtained by nuclear magnetic resonance (NMR). PCB modified by the demineralization and NDZ-105 titanate coupling agent could be used to replace the commercial semi-reinforcing carbon black.
Key words: Pyrolytic carbon black (PCB), Nuclear magnetic resonance (NMR), Relaxation, Dipolar correlation effect (DCE), Reinforcement
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/jzus.2006.A1440
CLC number:
X7; TH841
Download Full Text:
Downloaded:
3104
Clicked:
5695
Cited:
0
On-line Access:
2024-08-27
Received:
2023-10-17
Revision Accepted:
2024-05-08
Crosschecked: