Publishing Service

Polishing & Checking

Journal of Zhejiang University SCIENCE A

ISSN 1673-565X(Print), 1862-1775(Online), Monthly

Influence of surface treatments on fatigue life of a two-stroke free piston linear engine component using random loading

Abstract: This paper describes the finite element (FE) analysis technique to predict fatigue life using the narrow band frequency response approach. The life prediction results are useful for improving the component design methodology at the very early development stage. The approach is found to be suitable for a periodic loading but requires very large time records to accurately describe random loading processes. This paper is aimed at investigating the effects of surface treatments on the fatigue life of the free piston linear engine’s components. Finite element modelling and frequency response analysis were conducted using computer aided design and finite element analysis commercial codes, respectively. In addition, the fatigue life prediction was carried out using finite element based fatigue analysis commercial code. Narrow band approach was specially applied to predict the fatigue life of the free piston linear engine cylinder block. Significant variation was observed between the surface treatments and untreated cylinder block of free piston engine. The obtained results indicated that nitrided treatment yielded the longest life. This approach can determine premature products failure phenomena, and therefore can reduce time to market, improve product reliability and customer confidence.

Key words: Vibration fatigue, Finite element (FE), Power spectral density function, Frequency response, Surface treatment


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/jzus.2006.A1819

CLC number:

TB114.3

Download Full Text:

Click Here

Downloaded:

3987

Clicked:

7382

Cited:

0

On-line Access:

2024-08-27

Received:

2023-10-17

Revision Accepted:

2024-05-08

Crosschecked:

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE