Publishing Service

Polishing & Checking

Journal of Zhejiang University SCIENCE A

ISSN 1673-565X(Print), 1862-1775(Online), Monthly

Hydrothermal synthesis and characterization of two novel inorganic-organic hybrid materials

Abstract: By using different organic ligands, two 3D inorganic-organic hybrid compounds Co(C4H4N2)(VO3)2 1 and Co(C12H12N2)(VO3)2 2 were synthesized by hydrothermal reaction and characterized by X-ray crystallography. Crystal data: 1. crystal system orthorhombic, space group Pnna, a=10.188(2) Å, b=11.497(2) Å, c=7.3975(15) Å, V=866.5(3) Å3, Z=4, Dcalcd=2.705 g/cm3; 2. crystal system triclinic, space group P1 (No. 2), a=8.3190(17) Å, b=8.4764(17) Å, c=11.183(2) Å, α=95.48(3)°, β=92.03(3)°, γ=107.24(3)°, V=748.0(3) Å3, Z=2, Dcalcd=1.958 g/cm3. The framework of compound 1 contains both {Co(C4H4N2)} and infinite metavanadate chains. Crystal structure of compound 2 is constructed with inorganic {CoV2O6} layers across-linked by organic 1,2-bis(4-pyridyl) ethane ligands. The two compounds are thermally stable to approximately 410 °C and 350 °C, respectively. Their optical band gaps are determined to be 2.13 eV and 2.12 eV by UV-VIS-NIR diffuse reflectance spectra, which revealed their nature of semiconductor and optical absorption features.

Key words: Inorganic-organic hybrid materials, Hydrothermal synthesis, Crystal structure, Oxovanadium


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/jzus.A071180

CLC number:

O69

Download Full Text:

Click Here

Downloaded:

3277

Clicked:

6562

Cited:

1

On-line Access:

2024-08-27

Received:

2023-10-17

Revision Accepted:

2024-05-08

Crosschecked:

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE