|
Journal of Zhejiang University SCIENCE A
ISSN 1673-565X(Print), 1862-1775(Online), Monthly
2009 Vol.10 No.1 P.7-16
Measurement of the thermal transport properties of dielectric thin films using the micro-Raman method
Abstract: The micro-Raman method is a non-contact and non-destructive method for thermal conductivity measurement. To reduce the measurement error induced by the poor fit of the basic equation of the original micro-Raman method, we developed a new basic equation for the heat source of a Gaussian laser beam. Based on the new basic equation, an analytical heat transfer model has been built to extend the original micro-Raman method to thin films with submicrometer- or nanometer-scale thickness. Experiments were performed to measure the thermal conductivity of dielectric thin films with submicrometer- or nanometer-scale thickness. The thermal resistance of the interface between dielectric thin films and their silicon substrate was also obtained. The obtained thermal conductivity of silicon dioxide film is 1.23 W/(m·K), and the interface thermal resistance between silicon dioxide film and substrate is 2.35×10−8 m2·K/W. The thermal conductivity and interface thermal resistance of silicon nitride film are 1.07 W/(m·K) and 3.69×10−8 m2·K/W, respectively. The experimental results are consistent with reported data.
Key words: Thermal conductivity, Dielectric thin films, Submicrometer- or nanometer-scale, Porous silicon, Thermal effect micro-systems (TEMS)
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/jzus.A0820493
CLC number:
O55; TN3
Download Full Text:
Downloaded:
4695
Clicked:
7180
Cited:
7
On-line Access:
2024-08-27
Received:
2023-10-17
Revision Accepted:
2024-05-08
Crosschecked:
2008-10-29