Publishing Service

Polishing & Checking

Journal of Zhejiang University SCIENCE A

ISSN 1673-565X(Print), 1862-1775(Online), Monthly

Parameters optimization and nonlinearity analysis of grating eddy current displacement sensor using neural network and genetic algorithm

Abstract: A grating eddy current displacement sensor (GECDS) can be used in a watertight electronic transducer to realize long range displacement or position measurement with high accuracy in difficult industry conditions. The parameters optimization of the sensor is essential for economic and efficient production. This paper proposes a method to combine an artificial neural network (ANN) and a genetic algorithm (GA) for the sensor parameters optimization. A neural network model is developed to map the complex relationship between design parameters and the nonlinearity error of the GECDS, and then a GA is used in the optimization process to determine the design parameter values, resulting in a desired minimal nonlinearity error of about 0.11%. The calculated nonlinearity error is 0.25%. These results show that the proposed method performs well for the parameters optimization of the GECDS.

Key words: Grating eddy current displacement sensor (GECDS), Artificial neural network (ANN), Genetic algorithm (GA), Parameters optimization, Nonlinearity error


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/jzus.A0820564

CLC number:

TH7; TM15

Download Full Text:

Click Here

Downloaded:

3542

Clicked:

7378

Cited:

5

On-line Access:

2024-08-27

Received:

2023-10-17

Revision Accepted:

2024-05-08

Crosschecked:

2009-05-27

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE