Publishing Service

Polishing & Checking

Journal of Zhejiang University SCIENCE A

ISSN 1673-565X(Print), 1862-1775(Online), Monthly

Continuum damage mechanics based modeling progressive failure of woven-fabric composite laminate under low velocity impact

Abstract: A continuum damage mechanics (CDM) meso-model was derived for both intraply and interply progressive failure behaviors of a 2D woven-fabric composite laminate under a transversely low velocity impact. An in-plane anisotropic damage constitutive model of a 2D woven composite ply was derived based on CDM within a thermodynamic framework, an elastic constitutive model with damage for the fibre directions and an elastic-plastic constitutive model with damage for the shear direction. The progressive failure behavior of a 2D woven composite ply is determined by the damage internal variables in different directions with appropriate damage evolution equations. The interface between two adjacent 2D woven composite plies with different ply orientations was modeled by a traction-separation law based interface element. An isotropic damage constitutive law with CDM properties was used for the interface element, and a damage surface which combines stress and fracture mechanics failure criteria was employed to derive the damage initiation and evolution for the mixed-mode delamination of the interface elements. Numerical analysis and experiments were both carried out on a 2D woven glass fibre/epoxy laminate. The simulation results are in agreement with the experimental counterparts, verifying the progressive failure model of a woven composite laminate. The proposed model will enhance the understanding of dynamic deformation and progressive failure behavior of composite laminate structures in the low velocity impact process.

Key words: Continuum damage mechanics (CDM), Woven composite laminate, Low velocity impact, Interface element, Cohesive zone


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/jzus.A0900368

CLC number:

TB330.1

Download Full Text:

Click Here

Downloaded:

4053

Clicked:

8069

Cited:

3

On-line Access:

Received:

2009-06-24

Revision Accepted:

2009-10-27

Crosschecked:

2009-12-31

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE