Publishing Service

Polishing & Checking

Journal of Zhejiang University SCIENCE A

ISSN 1673-565X(Print), 1862-1775(Online), Monthly

Corrosion behavior of steel rebar in coal gangue-based mortars

Abstract: Corrosion of steel rebar is the most important durability problem of reinforced concrete. The aim of this research was to investigate the corrosion behavior of steel rebar in simulated pore solutions and gangue-blended cement mortar. The simulated pore solutions were based on the pore solution composition of gangue-blended cement. The pH and Cl concentration of simulated pore solutions had significant effects on corrosion potential. However, an increase in pH reduced the influence of Cl concentration on corrosion potential. The corrosion behavior of steel rebar in gangue-blended cement is different from that in simulated solutions. The gangue cementitious mortar surrounding steel rebar provides stable passivity environments for steel, leading to a decrease in ion diffusion coefficients. Alternating current impedance (ACI) analysis results indicated that the indicator Rc for concrete resistivity is higher for gangue mortar than for ordinary Portland cement (OPC), which improves its corrosion potential. The results from energy dispersive X-ray analysis (EDX) showed more aluminates and silicates at the rebar interface for gangue-blended cement. These aluminates improve the chloride binding capacity of hydrates in mortar, and increase the corrosion protection of steel rebar.

Key words: ord: Steel rebar, Corrosion, Coal gangue, Electrochemical


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/jzus.A0900443

CLC number:

TD98

Download Full Text:

Click Here

Downloaded:

2955

Clicked:

6371

Cited:

2

On-line Access:

2010-04-27

Received:

2009-07-22

Revision Accepted:

2009-11-16

Crosschecked:

2010-03-30

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE