Publishing Service

Polishing & Checking

Journal of Zhejiang University SCIENCE A

ISSN 1673-565X(Print), 1862-1775(Online), Monthly

Dimensionless study on outlet flow characteristics of an air-driven booster

Abstract: Air-driven boosters are widely used to obtain high-pressure gas. Through analysis of the boosting process of an air-driven booster, the basic mathematical model of working processes can be set up. By selecting the appropriate reference values, the basic mathematical model is transformed to a dimensionless expression. Using MATLAB/Simulink for simulation and studying the booster experimentally, the dimensionless outlet flow characteristics of the booster were obtained and the simulation results agree well with the experimental results. Through analysis, it can be seen that the dimensionless outlet flow of the booster is mainly determined by the dimensionless input pressure of the driving chamber, the dimensionless outlet condition pressure of the booster and the dimensionless area of the piston in the driving chamber. The dimensionless average outlet flow becomes larger with an increasing dimensionless input pressure of the driving chamber, but it becomes smaller with an increase in the dimensionless outlet condition pressure of the booster. Especially when the dimensionless outlet condition pressure is approximately 1.4, the dimensionless average outlet flow reaches zero. With an increase in the dimensionless area of the piston in the driving chamber, the dimensionless average outlet flow increases and peaks at approximately 1.89, and after this peak, it starts to decrease. This research can be referred to in the design of air-driven boosters.

Key words: Air-driven booster, Outlet flow, Pneumatic system, Compressed air


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/jzus.A1100176

CLC number:

TH138

Download Full Text:

Click Here

Downloaded:

3347

Clicked:

5767

Cited:

1

On-line Access:

2024-08-27

Received:

2023-10-17

Revision Accepted:

2024-05-08

Crosschecked:

2012-05-16

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE