Publishing Service

Polishing & Checking

Journal of Zhejiang University SCIENCE A

ISSN 1673-565X(Print), 1862-1775(Online), Monthly

High temperature mechanical performance and micro interfacial adhesive failure of textile reinforced concrete thin-plate

Abstract: The mechanical performance of textile reinforced concrete (TRC) thin-plate under high temperature conditions was investigated using three-point bending tests. The influence of polypropylene (PP) fiber addition on the out-of-plane load capacity of TRC thin-plate after high temperature treatment was also studied. The results showed that the thermostability of TRC thin-plate with textile impregnated with epoxy resin was not good, but that the out-of-plane load capacity of TRC thin-plate after high temperature treatment could be improved by increasing the plate thickness or the textile distribution rate. Under normal temperature and a high temperature of 120 °C, the out-of-plane load capacity of specimens could be increased and cracks better distributed by mixing the TRC with PP fiber. However, the out-of-plane load capacity of TRC thin-plate under a continuous high temperature of 200 °C was not much affected by the addition of PP fiber. The result of a microcosmic scanning electron microscope (SEM) test showed that the main reason for the interfacial adhesive failure between the textile and the original concrete substrate was the degradation of the epoxy resin under high temperature.

Key words: Textile reinforced concrete (TRC) thin-plate, Epoxy resin, Thermostable performance, Three-point bending test

Chinese Summary  <49> 织物增强混凝土薄板的高温力学性能与微观界面黏结破坏性分析

研究目的:探讨不同温度和持续时间对织物增强混凝土(TRC)薄板裂缝行为和承载能力的影响。通过微观扫描电镜观测观测,分析纤维编织网与基体混凝土间的界面黏结破坏机理。
创新方法:明确了高温后纤维编织网与基体混凝土之间界面粘结破坏的主要原因。以温度和持时为基本参数,对TRC构件的耐高温性能进行正确评价。
研究手段:通过三点弯曲试验(见图3),对高温后试件的力学性能(见图4、5)进行测试。通过微观扫描电镜观测(见图8~10),了解高温下纤维编织网、环氧树脂及基体混凝土的形态。
重要结论:1. 环氧树脂在200 °C高温作用90 min时劣化严重,造成纤维网与基体之间的界面黏结破坏,这是导致试件破坏的主要原因;2. 在常温或120 °C作用下,掺加聚丙烯(PP)纤维可以较大幅度地提高TRC构件的承载能力;但在200 °C、持续时间较长的高温作用下,PP纤维的掺入对试件的承载力几乎没有影响。

关键词组:织物增强混凝土薄板;环氧树脂;聚丙烯纤维;耐高温性能;三点弯曲试验


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/jzus.A1300150

CLC number:

TU528.34

Download Full Text:

Click Here

Downloaded:

3414

Clicked:

9092

Cited:

4

On-line Access:

2014-01-03

Received:

2013-05-04

Revision Accepted:

2013-11-11

Crosschecked:

2013-12-19

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE