|
Journal of Zhejiang University SCIENCE A
ISSN 1673-565X(Print), 1862-1775(Online), Monthly
2015 Vol.16 No.2 P.151-160
Influence of Al2O3 particles on the friction and wear behaviors of nitrile rubber against 316L stainless steel
Abstract: The friction and wear properties of nitrile rubber (NBR) against 316L stainless steel pairs were investigated by using a sphere-on-disc test device. The influence of Al2O3 particle sizes and the normal load on the tribological behaviors of the pairs were primarily evaluated. The damage behaviors of worn surfaces were analyzed using a scanning electric microscopy (SEM) and a surface profilometer. The results show that the friction coefficient decreased because of particles coming into contact pairs, while particles also play an important role in increasing the wear loss of stainless steel with many furrows on the steel ball surface due to the ploughing effect of hard particles. Large-sized particles could accelerate the wear of rubber, and the micro-cutting scratches of the stainless steel induced by the Al2O3 particles embedded in the rubber matrix. However, as the particle’s size decreased, the wear loss of the rubber was gradually mitigated. It is obvious that the normal load affected the wear of the rubber to a larger extent than the stainless steel. Moreover, with large particles, the wear loss of rubber increased sharply with increasing the normal load. In addition, the NBR/stainless steel tribo-pairs presented different wear mechanisms, under different conditions, such as having no particles or varied particle sizes.
Key words: Nitrile rubber (NBR), Friction and wear, Al2O3 particles, Elastomer seal, Tribological properties
创新点:基于橡胶O型圈常见失效机制,模拟橡胶密封圈在颗粒介入时的摩擦磨损行为,探讨硬质颗粒及其颗粒尺寸对橡胶/金属摩擦配副的影响。
方法:1. 采用球/平面接触方式,开展丁腈橡胶/金属(316L)配副在Al2O3颗粒环境下的摩擦磨损行为,通过考察摩擦系数时变曲线、摩擦副磨损形貌及其损伤机制等特性,揭示Al2O3颗粒对丁腈橡胶/316L不锈钢配副摩擦磨损行为的影响。
结论:1. Al2O3颗粒进入橡胶/金属摩擦配副明显降低摩擦系数、硬质颗粒的犁削作用,加剧金属偶件的磨损;2. 大尺寸的Al2O3颗粒能嵌入橡胶基体并加速橡胶的磨损,对金属有微切屑作用;然而随着颗粒尺寸的减小,颗粒反而减缓橡胶的磨损;3. 在有无颗粒和不同颗粒尺寸的情况下,橡胶和金属均表现出不同的损伤机制。
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/jzus.A1400217
CLC number:
TH117.1; TQ33
Download Full Text:
Downloaded:
3787
Download summary:
<Click Here>Downloaded:
2340Clicked:
5530
Cited:
3
On-line Access:
2024-08-27
Received:
2023-10-17
Revision Accepted:
2024-05-08
Crosschecked:
2015-01-23