Publishing Service

Polishing & Checking

Journal of Zhejiang University SCIENCE A

ISSN 1673-565X(Print), 1862-1775(Online), Monthly

3D thermal analysis of a permanent magnet motor with cooling fans

Abstract: Overheating of permanent magnet (PM) machines has become a major technical challenge as it gives rise to magnet demagnetization, degradation of insulation materials, and loss of motor efficiency. This paper proposes a state-of-the-art cooling system for an axial flux permanent magnet (AFPM) machine with the focus on its structural optimization. A computational fluid dynamics (CFD) simulation with thermal consideration has been shown to be an efficient approach in the literature and is thus employed in this work. Meanwhile, a simplified numerical approach to the AFPM machine with complex configuration in 3D consisting of conduction, forced convection, and conjugate heat transfer is taken as a case study. Different simplification methods (including configuration and working conditions) and two optimized fans for forced convection cooling are designed and installed on the AFPM machine and compared to a natural convection cooling system. The results show that the proposed approach is effective for analyzing the thermal performance of a complex AFPM machine and strikes a balance between reasonable simplification, accuracy, and computational resource.

Key words: Axial flux permanent magnet (AFPM) machine, Computational fluid dynamics (CFD), Cooling fan, Motor drives, Thermal analysis

Chinese Summary  <45> 配有冷却风扇的永磁电机三维热分析

目的:提出一种适合永磁电机的冷却系统设计方案,降低电机本体温度。
创新点:提出一种适合永磁电机热分析的CFD仿真模型。
方法:采用计算流体动力学方法对包含冷却风扇的永磁电机进行空间三维热力学分析和优化设计。
结论:本文提出并优化后的冷却风扇可有效降低永磁电机的最高和平均温度。

关键词组:轴向磁通永磁电机;计算流体动力学;冷却风扇;电机驱动;热分析


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/jzus.A1400293

CLC number:

U264.1

Download Full Text:

Click Here

Downloaded:

4694

Download summary:

<Click Here> 

Downloaded:

2327

Clicked:

9497

Cited:

1

On-line Access:

2024-08-27

Received:

2023-10-17

Revision Accepted:

2024-05-08

Crosschecked:

2015-07-20

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE