Publishing Service

Polishing & Checking

Journal of Zhejiang University SCIENCE A

ISSN 1673-565X(Print), 1862-1775(Online), Monthly

Design method of the pinned external integrated buckling-restrained braces with extended core. Part II: finite element numerical verification

Abstract: The theoretical derivation from Part I (Jiang et al., 2015) has obtained the core contact force and the bending moment distribution of the external member in the single-wave core deformation mode. In addition, the design criteria of the external member and the strengthened core region (SCR) have also been obtained based on the understanding of the mechanical characteristics of the buckling-restrained brace (BRB). Based on the theoretical results from Part I, this study conducts the corresponding finite element (FE) numerical verification, and the BRB parameter analysis is also performed when the core deforms as a single-wave deformation. The influence of nine parameters on the core contact force and the external member stress is investigated. These parameters include the flexural rigidity of external member, the initial imperfection of external member, the core thickness and its width-to-thickness ratio, the pinned connector length, the external member length, the length of restrained strengthened core region with uniform section and the height of the wing-plate of the SCR, as well as the gap between the core and the external member. Lastly, the 12 examples of BRBs that are designed according to the proposed design criteria are analyzed using FE simulation, and the reliability of the theoretical derivation is also verified.

Key words: External integrated buckling-restrained brace (BRB), Core single-wave overall deformation, Contact force distribution, Strengthened core region (SCR), Design criteria, Refined finite element

Chinese Summary  <30> 内核外伸铰接防屈曲支撑设计理论研究. 第二部分:数值验证

目的:本文旨在对系列文章第一部分所得到的理论推导结果进行相应的有限元数值验证,同时对内核单波变形下的支撑构件进行参数分析。
方法:采用通用有限元软件ABAQUS建立六个防屈曲支撑模型对内核单波变形下理论推导公式进行校核;并对理论公式进行参数分析,考察外围构件抗弯刚度、间隙大小、内核构件厚度、内核构件宽厚比、铰接接头长度、外围约束构件初始缺陷、外围构件长度、内核约束加强段长度及内核加强段翼板高度等9个参数对内核挤压力及外围构件受力影响;最后通过对12个防屈曲支撑进行数值模拟,验证支撑设计理论的合理性。
结论:该理论设计公式能较好地预测支撑的破坏情况及内力发展情况,具有较强的安全性和较广的适用性,为铰接防屈曲支撑的使用推广奠定理论基础。

关键词组:防屈曲支撑;内核单波整体变形;挤压力分布;内核构件加强段;设计准则;精细有限元


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/jzus.A1400326

CLC number:

TU391

Download Full Text:

Click Here

Downloaded:

4672

Download summary:

<Click Here> 

Downloaded:

2262

Clicked:

7313

Cited:

6

On-line Access:

2015-10-01

Received:

2014-10-25

Revision Accepted:

2015-06-17

Crosschecked:

2015-09-26

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE