|
Journal of Zhejiang University SCIENCE A
ISSN 1673-565X(Print), 1862-1775(Online), Monthly
2015 Vol.16 No.6 P.464-477
Optimal sensor placement for space modal identification of crane structures based on an improved harmony search algorithm
Abstract: The problem of optimal sensor placement plays a key role in the success of structural health monitoring (SHM) systems. In this study, a new method is presented to investigate the optimization problem of sensor placement on gantry crane structures. The method is a combination of an improved harmony search (HS) algorithm and the modal assurance criterion (MAC). Firstly, we review previous studies on setting reasonable values for HS parameters that have the most impact on the result, and highlight the lack of general rules governing this aspect. Based on more efficient HS algorithms resulting from those studies, we apply our proposed technique to the optimization problem of sensor placement on gantry crane structures. The purpose of the optimization method is to select the optimal sensor locations on gantry crane girders to establish a sensor network for an SHM system. Our results show that the HS algorithm is a powerful search and optimization technique that can lead to a better solution to the problem of engineering optimization. The mode of a crane structure could be identified more easily when different mode shape orientations are considered comprehensively.
Key words: Harmony search (HS) algorithm, Optimal sensor placement, Gantry crane, Modal assurance criterion (MAC), Structural health monitoring (SHM)
创新点:1.研究和声搜索算法的参数合理取值范围,提高计算效率;2.利用和声搜索算法结合模态置信度准则对起重机梁的空间模态识别进行研究,提出测点布置的合理优化方案。
方法:1.基于一种改进的和声搜索算法与模态置信度准则相结合的方法对最优的传感器布置方案进行研究,通过建立的评估函数对优化得到的布置方案进行评估比较,得到近似最优的测点位置和传感器数目;2.结合门式起重机结构的动力学特性研究结果,对其在二维和三维空间的振动模态分别进行研究比较,得到更为理想的优化布置方案。
结论:1.和声搜索算法具有程序实现简单和搜索能力较强的优点,本研究得到了其参数的合理取值范围,提高了其优化搜索的能力;2.研究得到了较为理想的测点位置和合理的传感器数目;3.根据起重机结构的动力特性,考虑其空间模态可得到更为理想的优化方案和识别能力。
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/jzus.A1400363
CLC number:
TU391
Download Full Text:
Downloaded:
3279
Download summary:
<Click Here>Downloaded:
2389Clicked:
5800
Cited:
5
On-line Access:
2024-08-27
Received:
2023-10-17
Revision Accepted:
2024-05-08
Crosschecked:
2015-05-07