|
Journal of Zhejiang University SCIENCE A
ISSN 1673-565X(Print), 1862-1775(Online), Monthly
2015 Vol.16 No.10 P.805-819
Plane elasticity solutions for beams with fixed ends
Abstract: The plane stress problem of beams is a typical one in elasticity theory. In this paper a new set of boundary conditions for the fixed end is proposed to improve the accuracy of the plane elasticity solution for beams with fixed end(s). Plane elasticity solutions are then derived for the cantilever beam, propped cantilever beam, and fixed-fixed beam. The new set of boundary conditions is constructed by combining two conventional ones with a parameter. The parameters for different kinds of beams are determined by minimizing the square sum of the longitudinal displacements through the thickness of the fixed end. Comparison with the results obtained by the finite element method (FEM) shows the efficiency of the new type of boundary conditions. When the beam is a deep one, it is found that different boundary conditions yield different errors, and the elasticity solution obtained by the new boundary conditions best approaches the FEM results.
Key words: Beam, Fixed end, Boundary condition, Plane stress, Elasticity solution
创新点:在已有固支边界条件的基础上,提出新的固支边界条件,由此得到的含固支端梁的弹性力学解的精度有很大提高。
方法:1. 综合Timoshenko和Goodier提出的两种固支边界条件,构造出一种新的固支边界条件,并应用Airy应力函数法推导出三种含固支端梁的解析解;2. 对由不同固支边界条件得到的解析解与有限元解进行比较。
结论:1. 与已有的固支边界条件相比,本文提出的固支边界条件更佳,尤其是对短梁;2. 理论与数值结果均表明,对超静定短梁,位移u不再保持线性分布,经典梁理论中的平截面假设不再适用。
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/jzus.A1500043
CLC number:
O343.1
Download Full Text:
Downloaded:
4527
Download summary:
<Click Here>Downloaded:
1878Clicked:
4802
Cited:
0
On-line Access:
2024-08-27
Received:
2023-10-17
Revision Accepted:
2024-05-08
Crosschecked:
2015-09-15