|
Journal of Zhejiang University SCIENCE A
ISSN 1673-565X(Print), 1862-1775(Online), Monthly
2016 Vol.17 No.1 P.1-21
Mechanics of dielectric elastomers: materials, structures, and devices
Abstract: Dielectric elastomers (DEs) respond to applied electric voltage with a surprisingly large deformation, showing a promising capability to generate actuation in mimicking natural muscles. A theoretical foundation of the mechanics of DEs is of crucial importance in designing DE-based structures and devices. In this review, we survey some recent theoretical and numerical efforts in exploring several aspects of electroactive materials, with emphases on the governing equations of electromechanical coupling, constitutive laws, viscoelastic behaviors, electromechanical instability as well as actuation applications. An overview of analytical models is provided based on the representative approach of non-equilibrium thermodynamics, with computational analyses being required in more generalized situations such as irregular shape, complex configuration, and time-dependent deformation. Theoretical efforts have been devoted to enhancing the working limits of DE actuators by avoiding electromechanical instability as well as electric breakdown, and pre-strains are shown to effectively avoid the two failure modes. These studies lay a solid foundation to facilitate the use of DE materials, structures, and devices in a wide range of applications such as biomedical devices, adaptive systems, robotics, energy harvesting, etc.
Key words: Artificial muscle, Smart material, Dielectric elastomer (DE), Electromechanical coupling, Constitutive law, Viscoelasticity, Electromechanical instability, Actuation
概要:本文介绍了近年来关于介电高弹体力电耦合问题的一些理论和数值研究,重点包括力电耦合的控制方程、材料本构关系、粘弹性响应、力电失稳以及致动器设计等方面。文中讨论了基于非平衡热动力学的介电高弹体力学模型处理复杂构型或与时间相关变形时常被采用的数值方法,优化介电高弹体致动极限的力学设计,以及介电高弹体力电响应在典型致动器中的应用。
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/jzus.A1500125
CLC number:
O33; O39
Download Full Text:
Downloaded:
7511
Download summary:
<Click Here>Downloaded:
6120Clicked:
18966
Cited:
4
On-line Access:
2024-08-27
Received:
2023-10-17
Revision Accepted:
2024-05-08
Crosschecked:
2015-10-12