|
Journal of Zhejiang University SCIENCE A
ISSN 1673-565X(Print), 1862-1775(Online), Monthly
2016 Vol.17 No.3 P.186-201
Characteristics of volumetric losses and efficiency of axial piston pump with respect to displacement conditions
Abstract: A good efficiency performance of a pump over a wide range of displacement conditions is crucially important for variable pump control systems to save energy. However, according to the literature, less attention has been paid to the understanding of the efficiency, leakage flow, and compression flow characteristics of the pump with respect to displacement conditions. In this study, a test bench was built, and a novel explicit volumetric loss model was proposed to investigate these problems. The overall efficiency is found to drop considerably with the decreasing displacement. The volumetric losses range from 13% to 47% of the total power losses of pump at the rated speed, under the conditions of pressure ranging from 5 to 35 MPa and displacement ranging from 13% to 100% of full displacement. The highest proportion of compression flow losses in the total volumetric losses of pump at the rated speed can reach up to 41% when the pressure and displacement are greater than 30 MPa and 88% of full displacement, respectively; after that, the proportion gradually decreases with decreasing displacement. However, the leakage flow generally increases with decreasing displacement, or may decrease first and begin to increase after the minimum with the further decrease of displacement. In the components of leakage of slipper/swash plate pair, the squeeze leakage is found to reach a magnitude equal to that of the Poiseuille leakage. The findings can guide the further research and design of pumps with better efficiency performance.
Key words: Axial piston pump, Efficiency, Leakage, Compression flow, Displacement condition
创新点:1. 提出更完整的滑靴副泄漏计算方程,建立显式容积损失仿真模型,发现由滑靴挤压微运动造成的挤压泄漏的不可忽略性;2. 揭示泵压缩流量、泄漏流量及其造成的能量损失随排量工况的变化特征。
方法:1. 基于纳维-斯托克斯方程及流体连续性方程,推导出更完整的滑靴副泄漏计算方程,基于此方程建立显式容积损失仿真模型;2. 在不同压力、转速及排量工况组合下对泵各损失进行224组大范围工况下的大量实验测试;3. 基于仿真结果及实验结果对宽幅排量工况下泵效率及各容积损失变化特征进行分析讨论。
结论:1. 泵总效率随排量减小显著下降;2. 在额定转速工况下,5~35 MPa压力等级及13%~100% 满排量变化范围内,泵容积损失在泵总损失中所占比重在13%~47% 幅度内变化;3. 额定转速下泵压缩流量损失在总容积损失中所占比重在30 MPa压力及88%满排量等级以上时最高可达41%, 此后随着排量减小而逐渐减小,当排量降至低于38%满排量或压力降至低于5 MPa时,压缩流量损失在泵总容积损失中占比低于20%;4. 压缩流量随排量减小而减小,而在绝大部分工况下,泵泄漏流量的典型变化特征是随着排量减小而逐渐增大,或先随着排量减小而减小,但在当减小到某一极小值时随着排量进一步的减小而逐渐增大;5. 由滑靴挤压微运动造成的滑靴副挤压泄漏可以达到与由压差效应造成的滑靴副压差泄漏相当的数量级。
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/jzus.A1500197
CLC number:
TH13
Download Full Text:
Downloaded:
4116
Download summary:
<Click Here>Downloaded:
2263Clicked:
5410
Cited:
3
On-line Access:
2024-08-27
Received:
2023-10-17
Revision Accepted:
2024-05-08
Crosschecked:
2016-02-15