|
Journal of Zhejiang University SCIENCE A
ISSN 1673-565X(Print), 1862-1775(Online), Monthly
2016 Vol.17 No.1 P.45-53
Supersonic mixing augmentation mechanism induced by a wall-mounted cavity configuration
Abstract: An efficient mixing process is very important for the engineering implementation of an airbreathing propulsion system. The air and injectant should be mixed sufficiently before entering the combustor. Two new wall-mounted cavity configurations were proposed to enhance the mixing process in a conventional transverse injection flow field. Their flow field properties were compared with those of a system with only transverse injection ports. Grid independency analysis was used to choose a suitable grid scale, and the mixing efficiencies at four cross-sectional planes (namely x=20, 40, 60, and 80 mm, which are just downstream of the jet orifice) were compared for the configurations considered in this study. The results showed that hydrogen penetrated deeper when a cavity was mounted upstream of the transverse injection ports. This is beneficial to the mixing process in supersonic flows. The mixing efficiency of the configuration with the wall-mounted cavity was better than that of the conventional physical model, and the mixing efficiency of the proposed novel physical model I (98.71% at x=20 mm) was the highest of all. In the case with only transverse injection ports, the vortex was broken up by the strong interaction between the shear layer over the cavity and the jet.
Key words: Scramjet engine, Mixing enhancement, Vortex generator, Transverse injection, Cavity, Supersonic flow
方法:提出两种壁面凹腔与横向射流的组合方式,采用数值模拟方法对其流场进行研究,并与纯横向射流流场细节进行对比。
结论:1. 由于凹腔上面剪切层与壁面横向射流的强烈交互作用,使得横向射流流场中产生的涡系结构被打破;相应地,当把凹腔置于喷孔上游时,亚声速区域面积更大;2. 当把凹腔置于喷孔上游时,燃料的渗透深度更大,这样有利于超声速气流中燃料与空气的混合;3. 新构型I的混合效率最高。凹腔上面剪切层与壁面横向射流之间的强烈交互作用对超声速气流中燃料的混合增强影响很大,这是超燃冲压发动机燃烧室构型优化的基石。
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/jzus.A1500244
CLC number:
V448
Download Full Text:
Downloaded:
3239
Download summary:
<Click Here>Downloaded:
2526Clicked:
5617
Cited:
5
On-line Access:
2024-08-27
Received:
2023-10-17
Revision Accepted:
2024-05-08
Crosschecked:
2015-12-16