|
Journal of Zhejiang University SCIENCE A
ISSN 1673-565X(Print), 1862-1775(Online), Monthly
2016 Vol.17 No.10 P.782-802
Three-dimensional inversion analysis of an in situ stress field based on a two-stage optimization algorithm
Abstract: Establishing an accurate in situ stress field is important for analyzing the rock-mass stability of the underground cavern at the Huangdeng hydropower station in China. Because of the complexity and importance of the in situ stress field, existing back analysis methods do not provide the necessary accuracy or sufficiently recognize nonlinear relations between the distribution of the in situ stress field and its formative factors. Those factors are related to the geological structures of high compressive tectonic stress regimes, including geological faults and tuff interlayers. The new two-stage optimization algorithm proposed in this paper is a combination of stepwise regression (SR), difference evolution (DE), support vector machine (SVM), and numerical analysis techniques. Stepwise regression is used to find the set of unknown parameters that best match the modeling prediction and determine the range of parameters to be recognized. Difference evolution is used to determine the optimum parameters of the SVM. The SVM is used to create the DE-SVM nonlinear reflection model to obtain the optimal values of the parameters from measured stress data. We compare the new two-stage optimization algorithm to other two popular methods, a multiple linear regression (MLR) analysis method and an artificial neural network (ANN) method, to estimate the in situ stress field for the actual underground cavern at the Huangdeng hydropower station. The two-stage optimization algorithm produces a more realistic estimate of the stress distribution within the investigated area. Thus, this technique may have practical applications in realistic scenarios requiring efficient and accurate estimations of the in situ stress in a rock-mass.
Key words: In situ stress, Stepwise regression (SR), Difference evolution (DE), Support vector machine (SVM), Finite element, Huangdeng underground cavern
创新点:1. 基于地应力场反演基本理论,建立逐步回归-差异进化-支持向量机模型(SR-DE-SVM)的二次反演非线性模型;2. 通过SR-DE-SVM算法计算流程,成功模拟工程区域地应力场分布。
方法:1. 通过工程勘测分析,推导出构造运动对工程区域地应力场分布产生的影响(表5和图13);2. 基于智能反演方法,构建SR-DE-SVM的二次反演非线性模型(公式(10)),得到SR-DE-SVM算法的计算流程(图2);3. 通过数值仿真模拟,结合地质历史的发展过程,验证所提出的二次反演方法的可行性和有效性(图10和11)。
结论:1. 工程区域内初始地应力水平属中等,主要受到岩体自重与构造运动的双重影响。2. SR-DE-SVM二次反演方法可更加清楚地明确初始地应力形成的主导成因,且更加准确、高效和真实地模拟工程区域三维地应力场的分布规律;3. 围岩类别对黄登地下洞室群区域内的初始地应力场影响不大,仅在断层带及III、IV类凝灰岩夹层带切割部位有显著的应力释放效应。
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/jzus.A1600014
CLC number:
TU931
Download Full Text:
Downloaded:
3028
Download summary:
<Click Here>Downloaded:
2398Clicked:
6350
Cited:
0
On-line Access:
2024-08-27
Received:
2023-10-17
Revision Accepted:
2024-05-08
Crosschecked:
2016-09-12