Publishing Service

Polishing & Checking

Journal of Zhejiang University SCIENCE A

ISSN 1673-565X(Print), 1862-1775(Online), Monthly

Finite deformation elasto-plastic consolidation analysis of soft clay by the weak form quadrature element method

Abstract: A weak form quadrature element formulation is established for finite deformation consolidation problems of an elasto-plastic saturated soft clay. The total Lagrangian (TL) description scheme and the weak form description of Biot’s theory are adopted in the derivation of the formulation. The constitutive model of the soil skeleton is based on a multiplicative decomposition of the deformation gradient into elastic and plastic parts. The exponential flow relation between the velocity of pore fluid and hydraulic gradient is used to describe the continuity condition in Biot’s theory. Results of numerical examples are compared with those of ABAQUS and previous studies, and very good agreement is reached, demonstrating the reliability and efficiency of the present formulation. The effect of non-Darcian flow on consolidation in the finite strain range is discussed and it is shown that, with the increase of the non-Darcian model parameters, the rate of consolidation and the differential settlement decrease.

Key words: Weak form quadrature element method; Finite deformation elasto-plastic consolidation; Soft clay; Multiplicative decomposition; Non-Darcian flow; Biot’s theory

Chinese Summary  <34> 软粘土弹塑性大变形的求积元法分析

目的:考虑几何非线性及非达西渗流对软粘土固结的影响,提出一种大变形固结问题的求积元求解列式,以提高数值方法的计算精度及计算效率。通过数值算例研究几何非线性及非线性渗流定律对软粘土固结的影响,为工程实际提供参考。
创新点:1. 提出一种大变形固结问题的高阶数值求解方法;2. 在固结问题求解中同时考虑几何非线性及非线性渗流定律。
方法:1. 基于初始构型,采用完全拉格朗日格式,建立大变形固结问题求解列式;2. 基于变形梯度乘法分解,得到大变形条件下的土体本构模型;3. 基于指数关系的渗流定律,建立渗流连续性方程; 4. 通过数值算例验证方法,研究几何非线性及非达西渗流对软粘土固结的影响。
结论:1. 所建立的求积元方法的收敛速度要远远快于有限元法,降低了问题计算规模;2. 在小变形条件下,最终沉降随外荷载线性变化,而在大变形条件下,随着载荷的增大,沉降相对于小变形条件有所降低;3. 当考虑非达西渗流定律时,软粘土的固结速率随着非达西渗流参数的增加而降低。

关键词组:弱形式求积元法;大变形弹塑性固结;软粘土;变形梯度乘法分解;非达西定律;比奥固结


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/jzus.A1600671

CLC number:

TU44

Download Full Text:

Click Here

Downloaded:

2806

Download summary:

<Click Here> 

Downloaded:

2042

Clicked:

6324

Cited:

0

On-line Access:

2024-08-27

Received:

2023-10-17

Revision Accepted:

2024-05-08

Crosschecked:

2017-11-15

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE