Publishing Service

Polishing & Checking

Journal of Zhejiang University SCIENCE A

ISSN 1673-565X(Print), 1862-1775(Online), Monthly

Parameters of a discrete element ballasted bed model based on a response surface method

Abstract: Discrete element simulation on ballasted beds is an important method to study the service characteristics of ballasted tracks; an effective simulation should be based on proper ballast parameters. Ballast contact parameter, which exhibits a high discreteness affected by factors such as material, shape, and gradation, can effectively be calibrated by an angle of repose test. Based on the testing principles of a multi-parameter response surface method, the Box–Behnken method is adopted to design the angle of repose test under the influence of restitution, static friction, and rolling friction coefficients; laboratory-measured results are combined with the simulation; regression analyzed angle of repose is considered as the goal; parameters optimization and ballasted bed resistance simulations are verified for multiple parameters. The results demonstrate that Chinese special-grade ballasts exhibit an average laboratory-measured angle of repose of (39.78±1.27)°, and the optimal combination of parameters in this discrete element simulation based on the response surface method are as follows: the restitution coefficient is 0.72, the static friction coefficient is 0.56, and the rolling friction coefficient is 0.27. The results of the lateral resistance simulation are in accordance with the laboratory test, indicating that the optimal parameters are usable. The multi-parameter response surface method effectively helps calibrate the parameters of the discrete element simulation on ballasted beds.

Key words: Ballasted track; Ballast; Discrete element method; Parameter; Calibration; Response surface method

Chinese Summary  <34> 基于响应面法的碎石道床离散元模型参数研究

关键词组:有砟轨道; 道砟; 离散元; 参数; 标定; 响应面法


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/jzus.A1900133

CLC number:

U213.7

Download Full Text:

Click Here

Downloaded:

2825

Download summary:

<Click Here> 

Downloaded:

2118

Clicked:

4937

Cited:

0

On-line Access:

2024-08-27

Received:

2023-10-17

Revision Accepted:

2024-05-08

Crosschecked:

2019-08-27

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE