Publishing Service

Polishing & Checking

Journal of Zhejiang University SCIENCE A

ISSN 1673-565X(Print), 1862-1775(Online), Monthly

A novel stress-based formulation of finite element analysis

Abstract: This paper demonstrates a novel formulation of structural analysis. A novel stress-based formulation of structural analysis for material nonlinear problems was proposed in earlier work. In this paper, this methodology is further extended for 3D finite element analysis. The approach avoids use of elastic moduli as the material input in the analysis procedure. It utilizes the whole stress-strain curve of the material. It can be shown that this analysis procedure solved the nonlinear or plasticity problem with relative ease. This paper solves a uniaxial bar, in which the results are compared with the solutions of Green-Lagrange strain and Piola-Kirchhoff stresses. The uniaxial bar is also solved by a regression model in the scikit-learn module in Python. The second problem solved is of a beam in pure bending for which the energy release rate is measured. For the beam in pure bending, the bending moment carrying capacity of the beam section is evaluated by this methodology as the crack propagates through the depth of the beam. It can be shown that the methodology is very simple, accurate, and clear in its physical steps.

Key words: Computational methods; Machine learning; Regression method; Material non-linear analysis; Finite element analysis

Chinese Summary  <30> 一种新的基于应力的有限元分析公式

关键词组:计算方法;机器学习;回归分析法;材料非线性分析;有限元分析


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/jzus.A2000397

CLC number:

TU39

Download Full Text:

Click Here

Downloaded:

3209

Download summary:

<Click Here> 

Downloaded:

1875

Clicked:

4792

Cited:

0

On-line Access:

2024-08-27

Received:

2023-10-17

Revision Accepted:

2024-05-08

Crosschecked:

2021-05-18

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE