Publishing Service

Polishing & Checking

Journal of Zhejiang University SCIENCE A

ISSN 1673-565X(Print), 1862-1775(Online), Monthly

Physics-informed neural networks for estimating stress transfer mechanics in single lap joints

Abstract: With the explosive growth of computational resources and data generation, deep machine learning has been successfully employed in various applications. One important and emerging scientific application of deep learning involves solving differential equations. Here, physics-informed neural networks (PINNs) are developed to solve the differential equations associated with a specific scientific problem. As such, algorithms for solving the differential equations by embedding their initial and boundary conditions in the cost function of the artificial neural networks using algorithmic differentiation must also be developed. In this study, various PINNs are adopted to estimate the stresses in the tablets and the interphase of a single lap joint. The proposed model is represented by two fourth-order non-homogeneous coupled partial differential equations, with the axial stresses in the upper and lower tablets adopted as the dependent variables. The axial stresses are a function of the tablet length, which presents the independent variable. Therefore, the axial stresses in the tablets are estimated by solving the coupled partial differential equations when subjected to the boundary conditions, whereas the remaining stress components are expressed in terms of axial stresses. The results obtained using the developed methodology are validated using the results obtained via MAPLE software.

Key words: Physics-informed neural networks (PINNs); Algorithmic differentiation; Artificial neural networks; Loss function; Single lap joint

Chinese Summary  <31> 用于评估单搭接接头应力传递的物理神经网络

关键词组:物理信息神经网络;算法微分;人工神经网络;损失函数;单搭接接头


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/jzus.A2000403

CLC number:

TP183

Download Full Text:

Click Here

Downloaded:

3249

Download summary:

<Click Here> 

Downloaded:

1719

Clicked:

4198

Cited:

0

On-line Access:

2024-08-27

Received:

2023-10-17

Revision Accepted:

2024-05-08

Crosschecked:

2021-07-20

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE