Publishing Service

Polishing & Checking

Journal of Zhejiang University SCIENCE A

ISSN 1673-565X(Print), 1862-1775(Online), Monthly

Mask R-CNN and multifeature clustering model for catenary insulator recognition and defect detection

Abstract: Rod insulators are vital parts of the catenary of high speed railways (HSRs). There are many different catenary insulators, and the background of the insulator image is complicated. It is difficult to recognise insulators and detect defects automatically. In this paper, we propose a catenary intelligent defect detection algorithm based on Mask region-convolutional neural network (R-CNN) and an image processing model. Vertical projection technology is used to achieve single shed positioning and precise cutting of the insulator. Gradient, texture, and gray feature fusion (GTGFF) and a K-means clustering analysis model (KCAM) are proposed to detect broken insulators, dirt, foreign bodies, and flashover. Using this model, insulator recognition and defect detection can achieve a high recall rate and accuracy, and generalized defect detection. The algorithm is tested and verified on a dataset of realistic insulator images, and the accuracy and reliability of the algorithm satisfy current requirements for HSR catenary automatic inspection and intelligent maintenance.

Key words: High speed railway (HSR) catenary insulator; Mask region-convolutional neural network (R-CNN); Multifeature fusion; K-means clustering analysis model (KCAM); Defect detection

Chinese Summary  <34> 基于Mask R-CNN和多特征聚类模型的接触网绝缘子识别和缺陷检测

作者:谭平1,李旭峰2,丁进1,崔志晟1,马吉恩2,孙月兰1,黄炳强1,方攸同2
机构:1浙江科技学院,自动化与电气工程学院,中国杭州,310023;2浙江大学,电气工程学院,中国杭州,310027
目的:绝缘子是高速铁路接触网的重要组成部分。绝缘子的故障会导致绝缘劣化,甚至会导致接触网断电,所以绝缘子缺陷检测对高速列车运行具有重要意义。本文旨在分析巡检车拍摄的接触网绝缘子的图像特点,结合绝缘子破损、污垢、异物和闪络四类主要缺陷,研究一种智能图像处理方法,以期有效识别绝缘子及其缺陷。
创新点:1.通过MaskR-CNN模型,实现绝缘子区域像素级切割及旋正;2.提出垂直投影技术,实现绝缘子单片区域快速准确定位;3.通过多特征融合和聚类分析模型,检测绝缘子破损、污垢、异物和闪络。
方法:1.通过分析接触网图像的特点,采用Mask R-CNN方法实现绝缘子区域定位、前后景像素分割以及倾斜修正(图5);2.通过垂直投影方法,得到绝缘子各片空间坐标信息(图6);3.通过提取图像梯度、纹理和灰度特征(公式(2)~(4)),运用特征融合聚类方法(公式(5)~(7)),计算其相邻片之间的特征分布差异(公式(8));4.基于实际拍摄图片构建实验测试样本,并分析实验过程及结果,验证所提方法的可行性和有效性。
结论:1.Mask R-CNN是一种高效的目标识别和实例分割深度学习模型;它在绝缘子识别方面展现了鲁棒性和高精度。2.实验表明,本文提出的绝缘子像素区域切割和倾斜校正具有较高精度。3.对于绝缘子缺陷检测,本文提出的多特征融合聚类分析模型测试结果显示其具有较高的缺陷识别精确度。

关键词组:高铁接触网绝缘子;MaskR-CNN;多特征融合;K均值聚类分析模型;缺陷检测


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/jzus.A2100494

CLC number:

Download Full Text:

Click Here

Downloaded:

1024

Download summary:

<Click Here> 

Downloaded:

572

Clicked:

1540

Cited:

0

On-line Access:

2024-08-27

Received:

2023-10-17

Revision Accepted:

2024-05-08

Crosschecked:

2022-09-22

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE