|
Journal of Zhejiang University SCIENCE A
ISSN 1673-565X(Print), 1862-1775(Online), Monthly
2023 Vol.24 No.3 P.177-188
Recent advances in traction drive technology for rail transit
Abstract: The traction drive system is the “heart” of rail transit vehicles. The development of sustainable, secure, economic, reliable, efficient, and comfortable contemporary rail transportation has led to increasingly stringent requirements for traction drive systems. The interest in such systems is constantly growing, supported by advancements such as permanent magnet (PM) motors, advanced electronic devices such as those using silicon carbide (SiC), new-generation insulating materials such as organic silicon, and advanced magnetic materials such as rare-earth magnets and amorphous materials. Progress has also been made in control methods, manufacturing technology, artificial intelligence (AI), and other advanced technologies. In this paper, we briefly review the state-of-the-art critical global trends in rail transit traction drive technology in recent years. Potential areas for research and the main obstacles hindering the development of the next-generation rail transit traction drive systems are also discussed. Finally, we describe some advanced traction drive technologies used in actual engineering applications.
Key words: Rail transit; Traction drive systems; Artificial intelligence (AI); Permanent magnet (PM) motors; Electronic devices
机构:浙江大学,电气工程学院,中国杭州,310027
概要:牵引传动系统是轨道交通车辆的"心脏"。当代轨道交通绿色、安全、经济、可靠、高效、舒适的发展方向对牵引传动系统提出了日益苛刻的要求。永磁电机等先进电机、碳化硅等先进电子器件、有机硅等新一代绝缘材料、稀土永磁和非晶等先进磁材料和现代控制技术、先进制造技术、人工智能等高新技术的快速发展为新一代牵引传动系统提供了重要的条件支撑。本文简略回顾近年来轨道交通牵引传动技术的重要进展,并对下一代轨道交通牵引传动技术的发展方向及面临的主要挑战进行探讨。
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/jzus.A2200285
CLC number:
Download Full Text:
Downloaded:
1216
Clicked:
1971
Cited:
0
On-line Access:
2024-08-27
Received:
2023-10-17
Revision Accepted:
2024-05-08
Crosschecked:
2023-03-17