|
Journal of Zhejiang University SCIENCE A
ISSN 1673-565X(Print), 1862-1775(Online), Monthly
2022 Vol.23 No.12 P.1027-1046
A novel stacking-based ensemble learning model for drilling efficiency prediction in earth-rock excavation
Abstract: Accurate prediction of drilling efficiency is critical for developing the earth-rock excavation schedule. The single machine learning (ML) prediction models usually suffer from problems including parameter sensitivity and overfitting. In addition, the influence of environmental and operational factors is often ignored. In response, a novel stacking-based ensemble learning method taking into account the combined effects of those factors is proposed. Through multiple comparison tests, four models, eXtreme gradient boosting (XGBoost), random forest (RF), back propagation neural network (BPNN) as the base learners, and support vector regression (SVR) as the meta-learner, are selected for stacking. Furthermore, an improved cuckoo search optimization (ICSO) algorithm is developed for hyper-parameter optimization of the ensemble model. The application to a real-world project demonstrates that the proposed method outperforms the popular single ML method XGBoost and the ensemble model optimized by particle swarm optimization (PSO), with 16.43% and 4.88% improvements of mean absolute percentage error (MAPE), respectively.
Key words: Drilling efficiency; Prediction; Earth-rock excavation; Stacking-based ensemble learning; Improved cuckoo search optimization (ICSO) algorithm; Comprehensive effects of various factors; Hyper-parameter optimization
机构:天津大学,水利工程仿真与安全国家重点实验室,中国天津,300350
目的:对钻进效率进行精确预测是制定土方开挖进度计划的关键。但现有预测方法多采用单个机器学习模型,存在参数敏感性和过拟合等问题,且往往忽略了环境因素和人员操作因素的影响。针对这些问题,本文提出一种同时考虑多种因素综合影响的新的集成学习预测方法。
创新点:1.建立一种基于Stacking集成学习的钻进效率预测模型;2.定量地考虑地质特性、人员操作、环境和机械特性等多种因素的综合影响;3.提出一种基于自适应步长策略的改进布谷鸟搜索优化方法,优化模型关键参数。
方法:1.通过多次对比实验,最终选择极值梯度提升(XGBoost)、随机森林(RF)和反向传播神经网络(BPNN)三个模型作为基学习器,支持向量回归(SVR)作为元学习器进行集成。2.建立基于自适应步长策略的改进布谷鸟搜索优化算法,对集成模型的Max_depth等超参数进行优化。3.将钻进效率值及相关影响因素的样本数据输入到每个基学习器中,得到相应的输出结果,再将预测结果作为元学习器的输入值,得到最终的预测结果。4.以中国西南地区某土石方工程为例,通过五折交叉验证方法,验证模型的鲁棒性,并采用五个常用评价指标评价模型的精度和泛化性能。
结论:工程应用结果表明,相比于目前流行的单个机器学习方法中预测性能最好的XGBoost和基于粒子群算法优化的Stacking集成模型,本文所提方法的平均绝对百分比误差(MAPE)分别提高了16.43%和4.88%。
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/jzus.A2200297
CLC number:
Download Full Text:
Downloaded:
1352
Download summary:
<Click Here>Downloaded:
522Clicked:
2049
Cited:
0
On-line Access:
2024-08-27
Received:
2023-10-17
Revision Accepted:
2024-05-08
Crosschecked:
2023-01-13