Publishing Service

Polishing & Checking

Journal of Zhejiang University SCIENCE A

ISSN 1673-565X(Print), 1862-1775(Online), Monthly

Advanced ocean wave energy harvesting: current progress and future trends

Abstract: With a transition towards clean and low-carbon renewable energy, against the backdrop of the fossil-energy crisis and rising pollution, ocean energy has been proposed as a significant possibility for mitigating climate change and energy shortages for its characteristics of clean, renewable, and abundant. The rapid development of energy harvesting technology has led to extensive applications of ocean wave energy, which, however, has faced certain challenges due to the low-frequency and unstable nature of ocean waves. This paper overviews the debut and development of ocean wave energy harvesting technology, and discusses the potential and application paradigm for energy harvesting in the “intelligent ocean.” We first describe for readers the mechanisms and applications of traditional wave energy converters, and then discuss current challenges in energy harvesting performance connected to the characteristics of ocean waves. Next, we summarize the progress in wave energy harvesting with a focus on advanced technologies (e.g., data-driven design and optimization) and multifunctional energy materials (e.g., triboelectric metamaterials), and finally propose recommendations for future development.

Key words: Ocean wave energy; Wave energy converters; Energy harvesting technology; Advanced energy materials; Intelligent ocean

Chinese Summary  <163> 先进海洋波浪能采集:当前进展和未来趋势

作者:何方,刘怡贝,潘佳鹏,叶星宏,焦鹏程
机构:浙江大学,海洋学院,中国舟山,316021
概要:在化石能源危机和环境污染加剧的背景下,能源产业正在向着清洁低碳方向转变。海洋能有望成为缓解气候变化和能源短缺的重要能量来源。波浪能是海洋能的重要组成部分。然而由于波浪的低频和不稳定性,其采集存在一定技术挑战。本文通过梳理波浪能转换装置的基本机理与主要应用,讨论现有波浪能采集技术的瓶颈与挑战;通过引入近年来出现的数据驱动结构优化等先进设计技术和摩擦电超材料等新型电学功能材料,提出波浪能采集技术的可能解决方案和未来发展方向,并讨论和展望能量采集在"智慧海洋"中的应用潜力和应用范式。

关键词组:波浪能;采集;结构优化;摩擦电超材料


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/jzus.A2200598

CLC number:

Download Full Text:

Click Here

Downloaded:

4213

Download summary:

<Click Here> 

Downloaded:

259

Clicked:

1057

Cited:

0

On-line Access:

2023-02-24

Received:

2022-12-12

Revision Accepted:

2023-01-16

Crosschecked:

2023-02-24

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE