|
Journal of Zhejiang University SCIENCE A
ISSN 1673-565X(Print), 1862-1775(Online), Monthly
2024 Vol.25 No.4 P.292-310
Influence of overhanging tool length and vibrator material on electromechanical impedance and amplitude prediction in ultrasonic spindle vibrator
Abstract: This study presents the development of an ultrasonic transducer with a radius horn for an ultrasonic milling spindle (UMS) system. The ultrasonic transducer was intended to have a working frequency of approximately 30 kHz. Two different materials were considered in the study: stainless steel (SS 316L) and titanium alloy (Ti-6Al-4V). Titanium alloy gave a higher resonance frequency (33 kHz) than stainless steel (30 kHz) under the same preload compression stress. An electromechanical impedance simulation was carried out to predict the impedance resonance frequency for both materials, and the effect of the overhanging toolbar was investigated. According to the electromechanical impedance simulation, the overhanging toolbar length affected the resonance frequency, and the error was less than 3%. Harmonic analysis confirmed that the damping ratio helps determine the resonance amplitude. Therefore, damping ratios of 0.015–0.020 and 0.005–0.020 were selected for stainless steel and titanium alloy, respectively, with an error of less than 1.5%. Experimental machining was also performed to assess the feasibility of ultrasonic-assisted milling; the result was a lesser cutting force and better surface topography of Al 6061.
Key words: Ultrasonic spindle; Ultrasonic vibration assisted-milling (UVAM); 1-degree of freedom (DOF); Frequency; Amplitude; Milling
机构:1Precision Machining Laboratory, Department of Mechanical Engineering, Yeungnam University, Gyeongsan-si, Gyeongbuk-do, Republic of Korea;2Korea Electrotechnology Research Institute (KERI), Changwon-si, Gyeongsangnam-do, Republic of Korea;3KASWIN Co., Ltd, Changwon-si, Gyeongsangnam-do, Republic of Korea
目的:本文围绕用于设计单自由度谐振装备的阻抗频率和振幅预测展开研究,并考虑刀具悬伸长度(OL)和换能器不同材料的影响。此外,本文旨在提出一种考虑OL和不同材料影响的阻抗和阻尼比模型,以预测谐振频率和振幅。
创新点:1.在阻抗模型中将圆角形变幅杆简化为指数形,并简化夹头、螺母和刀具。2.在振幅仿真分析中考虑振幅与阻尼比的关系,以精确预测振幅。3.在实验验证中研究换能器不同材料的影响。
方法:1.选用不锈钢(SS 316L)和钛合金(Ti-6Al-4V)做为超声换能器的材料,并在超声换能器上施加最大可达20 MPa的预紧力。2.研究OL在40~50 mm范围内变化时对谐振频率的影响,并测量在100~300 V电压下的谐振振幅。3.进行铝合金6061铣削实验以验证超声换能器的性能。
结论:1.钛合金材料具有较高的谐振频率和最大25.6 μm的振幅。2.机电阻抗仿真预测谐振频率的误差小于3%。3.为了准确预测谐振振幅,有必要通过标定校准来确定阻尼比。4.加工可行性实验表明,超声换能器可以使切削力降低20%~30%。
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/jzus.A2300243
CLC number:
Download Full Text:
Downloaded:
520
Download summary:
<Click Here>Downloaded:
277Clicked:
778
Cited:
0
On-line Access:
2024-08-27
Received:
2023-10-17
Revision Accepted:
2024-05-08
Crosschecked:
2024-04-16