Publishing Service

Polishing & Checking

Journal of Zhejiang University SCIENCE A

ISSN 1673-565X(Print), 1862-1775(Online), Monthly

Transfer relation between subgrade frost heave and slab track deformation and vehicle dynamic response in seasonally frozen ground

Abstract: Subgrade frost heave in seasonally frozen ground can greatly influence the safety and smooth running of high-speed trains and the service performance of track structures. In this study, we used a static model to: (1) investigate track‍–‍subgrade frost heave and develop a dynamic model of vehicle‍–‍track‍–‍subgrade frost heave; (2) explore the transfer relation between subgrade frost heave and track structure deformation; (3) examine the characteristics of interlayer debonding; (4) study the influence of subgrade frost heave on the dynamic response of vehicles in high-speed railways in seasonally frozen regions. A Fourier series was used to fit the frost heave waveform and simulate the behavior of subgrade uneven frost heave using data collected on-site. The results show: (i) The position of frost heave significantly affects the transfer of deformation to a slab track. The largest deformation of the track slab, with the amplitude transfer ratio reaching 20%, was recorded when the frost heave occurred near the joint of the base plate. (ii) At the same frost heave amplitude, long-wave frost heave causes smaller deformation and debonding of the track structure than short-wave frost heave. In the wavelength range of 10‍–‍30 m, the main frequency of the acceleration spectral density was concentrated between 3.5 and 3.7 Hz, with larger frost heave wavelengths producing smaller superposition on the vertical acceleration of the vehicle. (iii) The maximum wheel–rail force occurs when the front bogie passes the frost heave peak, with greater frost heave amplitudes producing greater wheel‍–‍rail force. From these results, we conclude there is a clear need to control the frost heave deformation of the track to reduce the dynamic response of the vehicle and in turn improve train operations.

Key words: Slab track; Subgrade frost heave; Transfer relation; Vehicle–track–subgrade coupling; Dynamic response


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/jzus.A2300303

CLC number:

Download Full Text:

Click Here

Downloaded:

1565

Clicked:

2749

Cited:

0

On-line Access:

2024-08-27

Received:

2023-10-17

Revision Accepted:

2024-05-08

Crosschecked:

2024-02-01

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE