|
Journal of Zhejiang University SCIENCE A
ISSN 1673-565X(Print), 1862-1775(Online), Monthly
2024 Vol.25 No.9 P.716-731
Effect of geometry simplification and boundary condition specification on flow field and aerodynamic noise in the train head and bogie region of high-speed trains
Abstract: The purpose of this study is to determine a suitable modeling method to make computational fluid dynamics (CFD) simulation more efficient for aeroacoustics optimization of the bogie region of high-speed trains. To this end, four modeling methods are considered, which involve different geometry simplifications and boundary condition specifications. The corresponding models are named the three-car marshalling model, computational domain shortening model, carbody shortening model, and sub-domain model. Combining the detached eddy simulation (DES) model and Ffowcs Williams-Hawkings (FW-H) equation, the unsteady flow field and far-field noise of the four models are predicted. To evaluate the effect of the different modeling methods, the time-averaged flow field, fluctuating flow field, and far-field noise results of the four models are compared and analyzed in detail with the results of the three-car marshalling model used as basis for comparison. The results show that the flow field results of the bogie region predicted by the four models have relatively high consistency. However, the usage of the non-time varying outlet boundary conditions in the computational domain shortening model and sub-domain model could affect the pressure fluctuation on the upstream carbody surface. When only the bogie region is used as the source surface, the differences between the far-field noise results of the three simplified models and the three-car marshalling model are all within 1 dB; when the train head is used as the source surface, the results of the carbody shortening model and the three-car marshalling model are more consistent.
Key words: Bogie region; Train head; Flow field; Aerodynamic noise; Geometry simplification; Boundary conditions
机构:1西南交通大学,轨道交通运载系统全国重点实验室,中国成都,610031;2南安普敦大学,工程与物理科学学院声与振动研究所,英国南安普敦,SO17 1BJ
目的:确定一种合适的简化建模方法以使计算流体动力学(CFD)模拟在高速列车转向架区域气动声学优化中更高效。
创新点:1.确定了一种合适的简化建模方法,该方法能够在保证与三车编组模型中头车第一个转向架区域流场和声学结果一致性的同时显著提高CFD模拟在高速列车转向架区域气动声学优化中的效率。2.通过对三种简化模型和三车编组模型流场和声学结果的对比和分析,确定了三种简化模型中涉及的不同几何简化和边界条件指定对车头和转向架区域流场和气动噪声的影响机理。
方法:1.在三车编组模型的基础上,建立用于高速列车转向架区域气动噪声计算的三种简化模型;2.结合IDDES模型和FW-H声类比理论建立转向架区域非定常流场和气动噪声预测的数值模型,并通过低马赫数空腔模型和简单转向架模型对数值方法和网格策略进行验证;3.以三车编组模型的计算结果为基准,对三种简化模型和三车编组模型的流场和声学结果进行对比和分析,确定与三车编组模型计算结果一致性最好的建模方式,并揭示三种简化模型中涉及的不同几何简化和边界条件指定对车头和转向架区域流场和气动噪声的影响机理。
结论:1.基于三种简化模型计算得到的列车表面时均压力分布和转向架区域时均速度分布与三车模型的计算结果非常一致。2.列车下部的压力波动较列车上部剧烈得多;三种简化模型的转向架区域脉动压力结果与三车模型的计算结果有很好的一致性;在列车上部,计算域缩短模型和子域模型低估了车头流线型曲面上的压力波动,而车体缩短模型的结果与三车编组模型的结果吻合较好;这是计算域缩短模型和子域模型中使用的非时变出口边界条件造成的。3.当仅以转向架区域作为声源时,三种简化模型的远场噪声结果与三车编组模型结果之间的差异都很小,且总声压级差异均在1 dB以内;当以整个车头作为噪声源时,由于计算域缩短模型和子域模型低估了车头流线型表面偶极子源的强度,所以它们与三车编组模型的总声压级结果最大差异分别为1.3 dB和1.8 dB,而车体缩短模型与三车编组模型的总声压级结果差异仍在1 dB以内。因此,车体缩短模型是转向架区域气动声学优化的一个很好的选择;它可以在保证与三车编组模型计算结果一致性的同时显著提高CFD模拟的效率。
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/jzus.A2300307
CLC number:
Download Full Text:
Downloaded:
759
Download summary:
<Click Here>Downloaded:
134Clicked:
1412
Cited:
0
On-line Access:
2024-08-27
Received:
2023-10-17
Revision Accepted:
2024-05-08
Crosschecked:
2024-09-29